• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (03): 560-570.

• 人工智能与数据挖掘 • 上一篇    

基于双通道轻量图卷积的序列推荐算法

罗旭,汪海涛,贺建峰   

  1. (昆明理工大学信息工程与自动化学院,云南 昆明 650500)
  • 收稿日期:2022-08-23 修回日期:2022-12-05 接受日期:2024-03-25 出版日期:2024-03-25 发布日期:2024-03-18
  • 基金资助:
    国家自然科学基金 ( 82160347)

Sequential recommendation based on dual-channel light graph convolution

LUO Xu,WANG Hai-tao,HE Jian-feng   

  1. (Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
  • Received:2022-08-23 Revised:2022-12-05 Accepted:2024-03-25 Online:2024-03-25 Published:2024-03-18

摘要: 传统基于图神经网络的序列推荐算法,在构图阶段忽略了其他用户序列中项目的转换关系,针对这一问题,提出了一种基于双通道轻量图卷积的序列推荐算法。首先,为目标用户找到其邻居用户序列,将目标用户序列和得到的邻居序列合并成一个有向序列图,充分利用了用户之间潜在的协作信息。然后,通过双通道轻量图卷积,分别对2种序列进行信息传播,每个通道通过指数分母的形式组合每一层的信息,融合2个通道得到的嵌入生成最终的项目嵌入。最后,对得到的项目嵌入通过后几项取平均的方式提取短期偏好,再通过引入挤压激励网络的多头自注意力机制提取长期偏好,整合长短期偏好得到用户的最终偏好。在2个公开数据集Beauty和MovieLens-20M上进行充分的实验并验证了算法的有效性。

关键词: 序列推荐, 构图, 指数分母, 轻量图卷积

Abstract: The traditional sequential recommendation algorithm based on graph neural network ignores the transformation relationship of items in other user sequences during the graph construction stage. To solve this problem, a sequential recommendation algorithm based on dual-channel light graph convolution is proposed. Firstly, the neighbor user sequence is found for the target user, and the target user sequence and the obtained neighbor sequence are combined into a directed sequence graph, which makes full use of the potential collaborative information between users. Then, the information of the two sequences is propagated through dual-channel light graph convolution. Each channel combines the information of each layer in the form of exponential denominator, and the embedding obtained from the two channels is fused to generate the final item embedding. Finally, the short-term preference is extracted by averaging the last several item embedding, and the long-term preference is extracted by introducing the multi-head self-attention mechanism of squeeze-and-excitation networks, and the final preference of users is obtained by integrating the long-term and short-term preferences. Extensive experiments on two public datasets, Beauty and MovieLens-20M, demonstrate the effectiveness of the proposed algorithm. 

Key words: sequential recommendation, graph construction, exponential denominator, light graph convolution