计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (03): 560-570.
• 人工智能与数据挖掘 • 上一篇
罗旭,汪海涛,贺建峰
LUO Xu,WANG Hai-tao,HE Jian-feng
摘要: 传统基于图神经网络的序列推荐算法,在构图阶段忽略了其他用户序列中项目的转换关系,针对这一问题,提出了一种基于双通道轻量图卷积的序列推荐算法。首先,为目标用户找到其邻居用户序列,将目标用户序列和得到的邻居序列合并成一个有向序列图,充分利用了用户之间潜在的协作信息。然后,通过双通道轻量图卷积,分别对2种序列进行信息传播,每个通道通过指数分母的形式组合每一层的信息,融合2个通道得到的嵌入生成最终的项目嵌入。最后,对得到的项目嵌入通过后几项取平均的方式提取短期偏好,再通过引入挤压激励网络的多头自注意力机制提取长期偏好,整合长短期偏好得到用户的最终偏好。在2个公开数据集Beauty和MovieLens-20M上进行充分的实验并验证了算法的有效性。