• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (06): 1063-1071.

• 图形与图像 • 上一篇    下一篇

改进Faster R-CNN的遥感图像小目标检测算法

胡昭华1,2,王长富1,2


  

  1. (1.南京信息工程大学电子与信息工程学院,江苏 南京 210044;
    2.南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏 南京 210044)
  • 收稿日期:2023-05-12 修回日期:2023-10-06 接受日期:2024-06-25 出版日期:2024-06-25 发布日期:2024-06-18
  • 基金资助:
    国家自然科学基金(61601230)

A small object detection algorithm of remote sensing image based on improved Faster R-CNN

HU Zhao-hua1,2,WANG Chang-fu1,2   

  1. (1.School of Electronics & Information Engineering,
    Nanjing University of Information Science & Technology,Nanjing 210044;
    2.Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology,
    Nanjing University of Information Science & Technology,Nanjing 210044,China)
  • Received:2023-05-12 Revised:2023-10-06 Accepted:2024-06-25 Online:2024-06-25 Published:2024-06-18

摘要: 遥感图像目标检测是目标检测领域的一个关键问题,目前利用深度学习检测目标的算法大多在单向特征融合过程中添加注意力机制,一视同仁地去增强各类型的目标,并不能突出小目标。为了取得更好的检测效果,通过引入非对称高低层调制机制,构造兼顾低层细节信息和高层语义信息的特征图,以达到增强小目标特征检测的目的;同时使用DIoU损失函数代替原算法SmoothL1损失函数以提升算法检测精度与收敛速度;并且在感兴趣区域分类任务中引入灵活上下文信息以提高小目标分类准确性。实验结果表明,该算法在DIOR和NWPU VHR-10数据集上均取得了良好的表现。

关键词: 深度学习, 小目标检测, 遥感图像, 非对称高低层调制, 上下文信息

Abstract: Object detection in remote sensing images is a critical issue in the field of object detection. Currently, most object detection models that using deep learning add attention mechanism during the unidirectional feature fusion process, enhancing various types of objects indiscriminately and failing to highlight small objects. In order to achieve better detection results, an asymmetric high and low-level modulation mechanism is introduced, constructing feature maps that consider shallow detail information and advanced semantic information with the aim of enhancing the characteristics of small objects. Additionally, the DIoU loss function is used instead of the original SmoothL1 loss function to improve model detection accuracy and convergence speed. Furthermore, flexible context information is introduced into in the region of interest classification task to improve the accuracy of small objects classification. Experiments demonstrate that the proposed method achieves good performance on DIOR and NWPU VHR-10 datasets. 

Key words: deep learning, small object detection, remote sensing image, asymmetric high-low layer modulation, context information