• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (07): 1245-1255.

• 计算机网络与信息安全 • 上一篇    下一篇

基于改进北方苍鹰优化随机配置网络的网络流量预测模型

王堃1,李少波2,何玲1,周鹏3   

  1. (1.贵州大学现代制造技术教育部重点实验室,贵州 贵阳 550025;
    2.贵州大学公共大数据国家重点实验室,贵州 贵阳 550025;3.贵州大学机械工程学院,贵州 贵阳 550025)
  • 收稿日期:2023-03-14 修回日期:2023-08-31 接受日期:2024-07-25 出版日期:2024-07-25 发布日期:2024-07-19
  • 基金资助:
    国家重点研发计划(2020YFB1713300)

A network traffic prediction model based on improved northern goshawk optimization for stochastic configuration network

WANG Kun1,LI Shao-bo2,HE Ling1,ZHOU Peng3   

  1. (1.Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education,Guizhou University,Guiyang 550025;
    2.State Key Laboratory of Public Big Data,Guizhou University,Guiyang 550025;
    3.School of Mechanical Engineering,Guizhou University,Guiyang 550025,China)
  • Received:2023-03-14 Revised:2023-08-31 Accepted:2024-07-25 Online:2024-07-25 Published:2024-07-19

摘要: 网络流量预测作为一种关键技术,能帮助实现网络资源的合理分配、优化网络性能以及提供高效的网络服务。随着网络环境的演变和发展,网络流量的多样性和复杂性增加,为了提高网络流量的预测精度,提出了一种基于改进北方苍鹰优化随机配置网络(CNGO-SCN)的网络流量预测模型。随机配置网络作为一种具有监督机制的增量式模型,在解决大规模数据回归和预测问题方面具有良好的优势。但是,一些超参数的选择影响了随机配置网络的准确性。针对这一问题,利用北方苍鹰算法对影响随机配置网络性能的正则化参数和比例因子进行优化,得到最佳数值。而北方苍鹰算法由于初始种群的随机分布导致种群个体质量不佳,因此引入混沌逻辑映射提升初始解的质量。将优化后的模型应用于英国学术网、欧洲某城市核心网网络流量数据集和合作企业搭建的网络协同制造云平台交换机接口的真实流量数据集,并与多种神经网络模型进行对比,以验证所提模型的网络流量预测能力。实验结果表明,该模型对比其他神经网络模型具有更高的预测精度,在实际应用场景中处理复杂数据时具备更加优秀的预测能力,该模型的预测误差下降了0.9%~99.7%。

关键词: 网络流量预测, 随机配置神经网络, 北方苍鹰优化算法, 混沌逻辑映射

Abstract: Network traffic prediction, as a critical technology, can assist in achieving rational allocation of network resources, optimizing network performance, and providing efficient network services. With the evolution and development of network environments, the diversity and complexity of network traffic have increased. To improve the accuracy of network traffic prediction, a network traffic prediction model based on improved northern goshawk optimization for stochastic configuration network (CNGO-SCN) is proposed. Stochastic configuration network, as a supervised incremental model, has significant advantages in addressing large-scale data regression and prediction problems. However, the accuracy of the stochastic configuration network is influenced by the selection of some hyperparameters. To address this issue, the northern goshawk optimization algorithm is used to optimize the regularization parameters and scaling factors that affect the performance of the stochastic configuration network, obtaining the optimal values. As the initial distribution of the population in the northern goshawk optimization algorithm leads to poor individual quality, chaos logic mapping is introduced to improve the quality of initial solutions. The optimized model is applied to real traffic datasets from the UK academic network, the core network of a European city, and a network collaborative manufacturing cloud platform interface established by a cooperative enterprise. It is compared with various neural network models to verify the network traffic prediction capability of the proposed method. Experimental results show that the model has higher prediction accuracy compared to other neural networks, exhibiting superior predictive capability when dealing with complex data in practical scenarios. The prediction error of the model decreases by 0.9% to 99.7%.

Key words: network traffic prediction, stochastic configuration network, northern goshawk optimization algorithm, chaotic logic mapping