• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (09): 1606-1615.

• 计算机网络与信息安全 • 上一篇    下一篇

基于差分隐私与模型聚类的安全联邦学习方案

肖迪,余柱阳,李敏,王莲   

  1. (重庆大学计算机学院,重庆 401331)

  • 收稿日期:2023-11-14 修回日期:2023-12-29 接受日期:2024-09-25 出版日期:2024-09-25 发布日期:2024-09-23
  • 基金资助:
    国家自然科学基金(62072063);重庆市研究生科研创新项目(CYB23045)

A secure federated learning scheme based on differential privacy and model clustering

XIAO Di,YU Zhu-yang,LI Min,WANG Lian   

  1. (College of Computer Science,Chongqing University,Chongqing 401331,China)
  • Received:2023-11-14 Revised:2023-12-29 Accepted:2024-09-25 Online:2024-09-25 Published:2024-09-23

摘要: 联邦学习中的模型安全以及客户隐私是亟待解决的重要挑战。为了同时应对这2大挑战,提出了一项基于差分隐私与模型聚类的联邦学习方案,该方案兼顾模型安全与隐私保护。通过在客户更新中引入局部差分隐私扰乱客户上传的参数以保护客户的隐私数据。为保证对加噪模型更新的精准聚类,首次定义余弦梯度作为聚类指标,并根据聚类结果精准定位恶意模型。最后引入全局差分隐私以抵御潜在的后门攻击。通过理论分析得到全局噪声的噪声边界,并证明了本方案引入的噪声总量低于经典模型安全方案所引入的噪声总量。实验结果表明,本方案能够达成在精度、鲁棒以及隐私3方面的预期目标。 

关键词: 联邦学习, 模型安全, 后门攻击, 差分隐私;隐私保护

Abstract: Model security and clients privacy are urgent challenges to be addressed in federated learning. In order to simultaneously tackle these challenges, a federated learning scheme based on differential privacy and model clustering is proposed. Local differential privacy is introduced in clients updates to protect clients privacy by disrupting the parameters. To ensure precise clustering of noisy model updates, cosine gradient is defined for the first time to cluster noisy model updates. Based on the clustering results, malicious models are accurately identified and filtered. Finally, global differential privacy is introduced to resist potential backdoor attacks. The noise boundary of global noise is obtained by theoretical analysis and it is proved that the total noise introduced by our scheme is lower than that introduced by the classical model security scheme. The experimental results demonstrate that our scheme can achieve the expected goals in terms of accuracy, robustness and privacy.

Key words: federated learning, model security, backdoor attack, differential privacy, privacy protection