计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (09): 1606-1615.
肖迪,余柱阳,李敏,王莲
XIAO Di,YU Zhu-yang,LI Min,WANG Lian
摘要: 联邦学习中的模型安全以及客户隐私是亟待解决的重要挑战。为了同时应对这2大挑战,提出了一项基于差分隐私与模型聚类的联邦学习方案,该方案兼顾模型安全与隐私保护。通过在客户更新中引入局部差分隐私扰乱客户上传的参数以保护客户的隐私数据。为保证对加噪模型更新的精准聚类,首次定义余弦梯度作为聚类指标,并根据聚类结果精准定位恶意模型。最后引入全局差分隐私以抵御潜在的后门攻击。通过理论分析得到全局噪声的噪声边界,并证明了本方案引入的噪声总量低于经典模型安全方案所引入的噪声总量。实验结果表明,本方案能够达成在精度、鲁棒以及隐私3方面的预期目标。