• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (09): 1635-1647.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于多种策略改进的鲸鱼优化算法

戴春雨1,马廉洁1,2,蒋涵存1,李红双1   

  1. (1.东北大学机械工程与自动化学院,辽宁 沈阳 110819;2.东北大学秦皇岛分校控制工程学院,河北 秦皇岛 066004)

  • 收稿日期:2023-04-20 修回日期:2023-10-17 接受日期:2024-09-25 出版日期:2024-09-25 发布日期:2024-09-23
  • 基金资助:
    国家自然科学基金(51975113)

An improved whale optimization algorithm based on multiple strategies

DAI Chun-yu1,MA Lian-jie1,2,JIANG Han-cun1,LI Hong-shuang1   

  1. (1.School of Mechanical Engineering and Automation,Northeastern University,Shenyang 110819;
    2.School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China)
  • Received:2023-04-20 Revised:2023-10-17 Accepted:2024-09-25 Online:2024-09-25 Published:2024-09-23

摘要: 针对标准鲸鱼优化算法收敛速度慢、搜索与开发不平衡、种群之间信息交流匮乏、容易陷入局部最优的问题,提出了一种改进算法。首先,采用Tent混沌映射提高初始种群的分布均匀性,并引入非线性收敛因子,提升算法前期的全局搜索和中后期局部开发的能力,协调了搜索与开发的转换机制。然后,将种群的平均位置向量引入随机搜索过程中,有效改善个体与种群之间缺乏信息交流的问题。接着,将自适应惯性权重引入位置更新公式中,以加快算法的收敛速度,提高求解精度。最后,利用柯西算子对陷入局部最优的个体进行变异扰动。通过15个基准测试函数对改进算法进行仿真实验,实验结果表明,改进后的鲸鱼优化算法具有良好的性能,并通过Wilcoxon秩和检验证明了改进算法的有效性。

关键词: Tent混沌映射, 非线性因子, 平均位置, 自适应权重, 柯西变异

Abstract: To address the issues of the standard whale optimization algorithm, including slow convergence speed, imbalance between exploration and exploitation, lack of information exchange among the population, and susceptibility to local optima, an improved algorithm is proposed. Firstly, the Tent chaotic mapping is employed to enhance the uniformity of the initial population distribution. Secondly, a nonlinear convergence factor is introduced to improve the algorithms global search ability in the early stage and local exploration ability in the middle and late stages, coordinating the transition mechanism between search and exploitation. Then, the average position vector of the population is introduced into the random search process, effectively addressing the lack of information exchange between individuals and the population. Next, an adaptive inertia weight is introduced into the position update formula to enhance the convergence speed and accuracy of the algorithm. Finally, the Cauchy operator is utilized to perform mutation perturbation on individuals trapped in local optima. Simulation experiments were conducted on 15 benchmark test functions to evaluate the improved algorithm. The experimental results demonstrate that the improved whale optimization algorithm possesses excellent performance, and the effectiveness of the improved algorithm is proven through the Wilcoxon rank-sum test

Key words: Tent chaotic map, nonlinear factor, average position, adaptive weight, Cauchy variation