计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (10): 1765-1774.
李公瑾1,邵玉斌1,杜庆治1,龙华1,2,马迪南2
LI Gong-jin1,SHAO Yu-bin1,DU Qing-zhi1,LONG Hua1,2,MA Di-nan2
摘要: 为了解决现有检测模型无法准确识别语言风格多变、语意隐晦的恶意评论问题,提出了一种基于双向胶囊网络的恶意评论检测模型。首先,利用BERT模型对评论文本进行词嵌入,创建输入矩阵;其次,将输入矩阵传递给双向特征提取层,该层由堆叠的LSTM、双向胶囊网络和注意力网络组成,从正向和反向同时捕获文本的深层语义信息,将生成的正向和反向矩阵拼接起来并输入到注意力机制中,聚焦与恶意评论相关的词语并生成输出向量;再次,拼接输出向量与语境辅助特征向量,丰富特征表示;最后,将拼接向量输入到全连接层中,通过Sigmoid激活函数对评论文本进行分类。在维基百科恶意评论数据集上进行的实验表明,相较于现有研究,基于双向胶囊网络的恶意评论检测模型性能提升显著,能够捕获评论文本中更丰富的语义信息,有效检测恶意评论。