计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (11): 2081-2090.
• 人工智能与数据挖掘 • 上一篇
郭兴君,李晓红,史婉媱,高文超
GUO Xing-jun,LI Xiao-hong,SHI Wan-yao,GAO Wen-chao
摘要: 针对已有社区检测方法存在忽略高阶结构信息,且在信息引入过程中极易产生碎片的问题,提出了一种融合模体感知和图Transformer编码的社区检测方法。首先,将原图中的极大完全子图视为模体,并以模体为顶点对原图进行重构,捕获模体邻接矩阵。同时,使用混阶外切边编码获取原图的残留边信息,解决碎片问题,利用位置编码和内权边编码捕获重构图上的位置信息和边信息。其次,使用图Transformer提取原图携带的初始特征,再对编码所得的位置信息和边信息及初始特征进行融合,获得模体嵌入矩阵,实现社区检测。最后,在几个不同数据集上的实验结果表明,所提方法可以有效提高社区检测的性能,而且,对重叠社区检测和多社区公共顶点检测也是有效的。