计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (3): 434-447.
王煜恒,刘强,伍晓洁
WANG Yuheng,LIU Qiang,WU Xiaojie
摘要: 近些年来,图神经网络GNN被广泛应用于异常检测、推荐系统和生物医药等领域。尽管GNN在特定任务中表现出优异的性能,但许多研究表明,GNN容易受到对抗性扰动的影响。为了缓解GNN面对对抗样本时暴露出的脆弱性问题,部分研究人员针对图修改攻击提出了鲁棒性认证防御技术,旨在提升GNN模型在该场景下抵御恶意扰动的能力。然而,在图注入攻击GIA场景下关于节点分类模型的鲁棒性分析仍未被广泛探索。面对上述挑战,扩展了稀疏感知随机平滑机制并设计了一种GIA场景下基于随机平滑的鲁棒性认证方法RCGNN。为了使得噪声扰动空间符合GIA攻击行为,预注入恶意节点并将扰动限制在恶意节点附近,同时对噪声扰动函数进行了改进,以提升认证比例和扩大最大认证半径。在真实数据集上的对比实验表明,RCGNN能够实现GIA场景下节点分类任务的鲁棒性认证,相较于稀疏感知随机平滑机制在认证比例和最大认证半径方面获得了更佳的认证性能。