• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (3): 434-447.

• 计算机网络与信息安全 • 上一篇    下一篇

RCGNN:图注入攻击下的图神经网络鲁棒性认证方法

王煜恒,刘强,伍晓洁   

  1. (国防科技大学计算机学院,湖南  长沙 410073)

  • 收稿日期:2024-07-04 修回日期:2024-08-29 出版日期:2025-03-25 发布日期:2025-04-01
  • 基金资助:
    国家重点研发计划项目“科技创新2030”(2022ZD0209105)

RCGNN: Robustness certification for graph neural networks under graph injection attacks

WANG Yuheng,LIU Qiang,WU Xiaojie   

  1. (College of Computer Science and Technology,National University of Defense Technology,Changsha 410073,China)
  • Received:2024-07-04 Revised:2024-08-29 Online:2025-03-25 Published:2025-04-01

摘要: 近些年来,图神经网络GNN被广泛应用于异常检测、推荐系统和生物医药等领域。尽管GNN在特定任务中表现出优异的性能,但许多研究表明,GNN容易受到对抗性扰动的影响。为了缓解GNN面对对抗样本时暴露出的脆弱性问题,部分研究人员针对图修改攻击提出了鲁棒性认证防御技术,旨在提升GNN模型在该场景下抵御恶意扰动的能力。然而,在图注入攻击GIA场景下关于节点分类模型的鲁棒性分析仍未被广泛探索。面对上述挑战,扩展了稀疏感知随机平滑机制并设计了一种GIA场景下基于随机平滑的鲁棒性认证方法RCGNN。为了使得噪声扰动空间符合GIA攻击行为,预注入恶意节点并将扰动限制在恶意节点附近,同时对噪声扰动函数进行了改进,以提升认证比例和扩大最大认证半径。在真实数据集上的对比实验表明,RCGNN能够实现GIA场景下节点分类任务的鲁棒性认证,相较于稀疏感知随机平滑机制在认证比例和最大认证半径方面获得了更佳的认证性能。

关键词: 图神经网络;节点分类, 随机平滑;图注入攻击;鲁棒性认证

Abstract: In recent years, graph neural network (GNN) has been widely applied in fields such as anomaly detection, recommendation systems, and biomedicine. Despite their excellent performance in specific tasks, many studies have shown that GNN is susceptible to adversarial perturbations. To mitigate the vulnerability of GNN to adversarial examples, some researchers have proposed robustness certification defense techniques against graph modification attacks, aiming to enhance the ability of GNN models to resist malicious perturbations in this scenario. However, the robustness analysis of node classification models in the context of graph injection attack (GIA) has not been widely explored. Facing this challenge, we extend the sparse-aware randomized smoothing mechanism and design a robustness certification method, RCGNN, based on randomized smoothing for the GIA scenario. To align the noise perturbation space with GIA attack behaviors, we pre-inject malicious nodes and restrict perturbations near these nodes, and improve the noise perturbation function to increase the certification ratio and expand the maximum certification radius. Comparative experiments on real datasets demonstrate that RCGNN can achieve robustness certification for node classification tasks in the GIA scenario, and it outperforms the sparse-aware randomized smoothing mechanism in terms of certification ratio and maximum certification radius.

Key words: graph neural network (GNN), node classification, randomized smoothing, graph injection attack (GIA), robustness certification