计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (3): 459-471.
景永俊1,2,王浩1,邵堃1,王晓峰2
JING Yongjun1,2,WANG Hao1,SHAO Kun1,WANG Xiaofeng2
摘要: 网络入侵检测是保护计算资源和数据免受网络攻击的重要手段。近年来,基于深度学习的方法在入侵检测领域取得了显著进展,但仍存在有效特征提取困难和过度依赖手工标注数据等问题。针对上述问题,提出一种基于图热核扩散卷积的半监督入侵检测方法,该方法在流量统计特征的基础上,以源IP和目标IP地址为节点,以它们之间的交互关系为边,构建入侵检测主机交互图。通过融合网络流量统计特征与潜在的图结构特征,该方法利用图热核扩散传播机制,聚合丰富的邻域信息以学习节点的特征表示,这些节点表示能够使得下游的入侵检测任务更准确地识别异常节点和恶意连接,提升入侵检测的性能。在CIC-IDS-2017和CIC-IDS-2018 2个数据集上进行的实验结果表明,该方法能够有效捕获网络流量数据中的复杂拓扑结构和节点之间的关系特征,仅通过少量的流量特征和标签信息就能够学习节点的低维向量表示。此外,通过对节点表示的聚类分析和可视化,能够揭示攻击节点在网络中的社区结构和连接特征,这为新型或变种攻击的预防提供了参考。