摘要: 图数据规模的迅速膨胀,传统分析技术难以应对,尤其在频繁模式挖掘任务中,传统算法往往面临计算资源崩溃的风险。图采样技术能够有效减小数据体量,并进而降低计算开销,已成为图数据分析任务重要的研究方向。然而,现有的图采样算法对频繁模式挖掘任务的支持存在局限,其原因是这些算法未能充分将图数据的关键属性融入结构特征,从而导致采样质量较低。为此,提出了兼顾图的高频结构与关键属性的模式感知采样PAS算法。PAS依托邻域(局部特征)和高频单边模式(全局特征)对图中节点和边进行加权,随后通过在加权图上的有偏游走,完成采样任务。实验表明,PAS在多项指标上优于基线算法,并且能在采样图上挖掘出与原图高度一致的前B个频繁模式,在采样率仅为0.20的设定下,准确率最高达到94%。