• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (9): 1598-1608.

• 计算机网络与信息安全 • 上一篇    下一篇

面向分类器进行特征加权的Android恶意软件检测

熊智1,2,刘芳1,王逸轩1   

  1. (1.汕头大学数学与计算机学院,广东 汕头 515800;
    2.智能制造技术教育部重点实验室(汕头大学),广东 汕头 515063)
  • 收稿日期:2024-01-15 修回日期:2024-05-10 出版日期:2025-09-25 发布日期:2025-09-22
  • 基金资助:
    广东省基础与应用基础研究基金(2024A1515011765); 广东省科技计划(STKJ2023012)

Android malware detection based on classifier-oriented feature weighting

XIONG Zhi1,2,LIU Fang1,WANG Yixuan1   

  1. (1.College of Mathematics and Computer Science,Shantou University,Shantou 515800;
    2.Key Laboratory of Intelligent Manufacturing Technology 
    of Ministry of Education (Shantou University),Shantou 515063,China)

  • Received:2024-01-15 Revised:2024-05-10 Online:2025-09-25 Published:2025-09-22

摘要: 特征加权可以提供更综合的信息增强模型的学习能力和决策准确性,但在实际运用时往往忽视了特征与分类器之间的相互关系。针对这一问题,提出一种面向分类器的特征加权法COFW,并将其应用于Android恶意软件检测。首先从Android应用程序包中提取7个类别的特征,并挑选出最重要的特征子集;其次根据检测恶意软件所使用的分类器,采用COFW为该分类器计算每个特征的最优权重;最后采用加权后的特征训练该分类器。COFW采用去一法为每个特征计算初始权重,然后通过一个映射函数将其映射为最终权重,并采用差分进化算法优化映射函数和分类器的参数。实验结果表明,运用COFW进行特征加权能够提升分类器的性能,并且COFW的性能优于其他4种为Android恶意软件检测设计的特征加权法。

关键词: 特征加权, 面向分类器, 映射函数, Android恶意软件检测

Abstract: Feature weighting can provide more comprehensive information to enhance models learning ability and decision accuracy,but the relationship between features and classifiers is often ignored in practice.To address this problem,a classifier-oriented feature weighting method called COFW is proposed and applied to Android malware detection.Firstly,the features of seven categories are extract- ed from the Android application package,and the most important feature subset is selected.Secondly, according to the classifier used to detect malware,COFW is employed to compute the optimal weight of each feature for the classifier.Finally,the classifier is trained on  the weighted features.COFW adopts the method of removing one to calculate an initial weight for each feature,then maps it to the final weight through a mapping function,and uses a differential evolution algorithm to optimize the parameters of the mapping function and the classifier.The experimental results show that using COFW for feature weighting can improve the performance of the classifier,and COFW outperforms the other four feature weighting methods designed for Android malware detection.


Key words: feature weighting, classifier-oriented, mapping function, Android malware detection