• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (11): 2082-2090.

• 人工智能与数据挖掘 • 上一篇    

融合平衡与地位理论的自监督符号社交关系预测模型

唐月晨,马慧芳,舒珂   

  1. (1.西北师范大学计算机科学与工程学院,甘肃 兰州 730070;
    2.桂林电子科技大学广西可信软件重点实验室,广西 桂林 541004)
  • 收稿日期:2024-04-11 修回日期:2024-08-23 出版日期:2025-11-25 发布日期:2025-12-08
  • 基金资助:
    国家自然科学基金(62567007,62441701);广西可信软件重点实验室项目(1x202302);甘肃省产业支撑项目 (2022CYZC11)


A self-supervised signed social relationship prediction model fusing balance and status theories

TANG Yuechen,MA Huifang,SHU Ke   

  1.  (1.College of Computer Science & Engineering,Northwest Normal University,Lanzhou 730070;
    2.Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin 541004,China) 
  • Received:2024-04-11 Revised:2024-08-23 Online:2025-11-25 Published:2025-12-08

摘要: 符号社交关系预测旨在预测社交网络中的社会实体之间是否存在积极有向交互或消极有向交互。现有的社交关系预测模型往往忽略社交网络中的符号、方向特性,而平衡理论为建模符号相关的社交关系提供了指导依据,地位理论为建模符号、方向联合的社交关系提供了指导依据。此外,自监督技术能从上述2个角度为节点特征学习彼此提供有效辅助信息。据此,提出了融合平衡与地位理论的自监督符号社交关系预测模型。该模型充分利用平衡和地位理论建模友谊和层级关系,分别捕捉边符号和方向对不同社交关系的影响。为了提高预测性能,采用自监督学习的对比学习机制探索网络中方向和符号在训练过程中的互补信息,并在真实数据集上验证了该模型的有效性。


关键词: 符号社交网络, 平衡理论, 地位理论, 对比学习, 关系预测

Abstract: Signed social relationship prediction aims to predict whether there exists positive directed interactions or negative directed interactions between social entities in a social network. Existing social relation prediction models often overlook the signed and directional characteristics in social networks. Balance theory provides guidance for modeling signed-related social relations, while status theory offers guidance for modeling the joint signed and directional social relations. Moreover, self-supervised techniques can effectively provide mutual assistance in learning node features from these two perspectives. Accordingly, this paper proposes a self-supervised signed social relationship prediction model fusing balance and status theories, which aims to make full use of balance and status theories to model friendships and hierarchical relationships, and to capture the effects of edge signs and directions on different relationships, respectively. To improve prediction performance, a contrastive learning mechanism is used to explore the complementary information of signs and directions in the network during training. Experiments on real datasets validate the effectiveness of the proposed model in this paper. 

Key words: signed social network, balance theory, status theory, contrastive learning, relationship prediction