• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (12): 2169-2180.

• 计算机网络与信息安全 • 上一篇    下一篇

融合聚类和结构优化的属性访问控制策略评估

夏桐,袁凌云,谢天玉   

  1. (1.云南师范大学信息学院,云南 昆明 650500;2.云南师范大学民族教育信息化教育部重点实验室,云南 昆明 650500)

  • 收稿日期:2024-01-18 修回日期:2024-08-05 出版日期:2025-12-25 发布日期:2026-01-06
  • 基金资助:
    国家自然科学基金(62262073);云南省应用基础研究计划(202101AT070098);云南省“万人计划”青年拔尖人才项目(YNWR-QNBJ-2019-237);云南省重大科技专项(202202AE090011)


Evaluation of attribute access control policy integrating clustering and structural optimization

XIA Tong,YUAN Lingyun,XIE Tianyu   

  1. (1.School of Information Science and Technology,Yunnan Normal University,Kunming 650500;
    2.Key Laboratory of Educational Information for Nationalities,
    Ministry of Education,Yunnan Normal University,Kunming 650500,China)
  • Received:2024-01-18 Revised:2024-08-05 Online:2025-12-25 Published:2026-01-06

摘要: 为加快用户请求资源的响应速度,提出一种融合聚类和结构优化的属性访问控制策略评估方法。首先,构建规则距离权重矩阵,以计算非数值型规则数据点间的实际距离;其次,基于CKmeans双阶段聚类方法处理大规模策略集,将其划分为若干个小规模策略簇,缩小策略匹配范围;最后,基于规则结构优化整合方法,压缩簇中规则条目,减少访问请求与簇规则的比较次数,并同时加入哈希缓存表,加快重复请求的访问速度。使用现实系统中的多个XACML访问控制策略验证所提方法的有效性。实验结果表明,相比于现有的Sun’s XACML和Xengine评估引擎以及4类机器学习方法,所提方法在LMS,VMS和ASMS这3个策略集上的时间开销显著减少,至多降低了约3个数量级,极大提升了策略的评估效率。


关键词: 授权访问控制, 策略评估, 双阶段聚类, 规则结构优化, 哈希缓存

Abstract: To accelerate the response speed for user requests to access resources, this paper proposes an evaluation method for attribute-based access control policies that integrates clustering and structural optimization. Firstly, a rule distance weight matrix is constructed to calculate the actual distances between non-numeric rule data points. Secondly,  large-scale policy sets are processed using the CKmeans (canopy k-means) two-stage clustering method, dividing it into several small-scale policy clusters to reduce the scope of policy matching. Finally, based on a rule structure optimization and integration approach, the number of rule entries within clusters is compressed, minimizing the number of comparisons between access requests and cluster rules, and a hash cache table is introduced to expedite access for repeated requests. The effectiveness of the proposed method is validated using multiple XACML (extensible access control markup language) access control policies from real-world systems. Experimental results demonstrate that, compared to existing evaluation engines such as Sun’s XACML and Xengine, as well as four types of machine learning methods, the proposed method significantly reduces time overhead across three policy sets—LMS, VMS, and ASMS—with a maximum reduction of approximately three orders of magnitude, greatly enhancing policy evaluation efficiency.


Key words: authorized access control, policy evaluation, two-stage clustering, rule structural optimization, hash caching