• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (12): 2269-2280.

• 人工智能与数据挖掘 • 上一篇    

基于ITCN-IDBO-SVM的间歇过程故障诊断研究

梁秀霞,何月阳,刘冲,梁涛
  

  1. (河北工业大学人工智能与数据科学学院,天津 300401)
  • 收稿日期:2024-04-11 修回日期:2024-08-25 出版日期:2025-12-25 发布日期:2026-01-06

Batch process fault diagnosis based on ITCN-IDBO-SVM#br#
#br#

LIANG Xiuxia,HE Yueyang,LIU Chong,LIANG Tao   

  1. (School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China)
  • Received:2024-04-11 Revised:2024-08-25 Online:2025-12-25 Published:2026-01-06

摘要: 为提高间歇过程故障诊断的准确性,并解决传统分类器在特征提取上的依赖性问题,本文提出了一种基于改进的时间卷积网络ITCN-改进的蜣螂优化算法IDBO-支持向量机SVM结合的故障诊断模型。故障诊断分为故障特征提取和分类诊断2个过程。首先,利用ITCN从间歇过程数据中提取特征,并将全连接层的输出作为IDBO-SVM分类层的输入。其次,通过IDBO优化SVM参数以提高模型的分类精度,同时使用T-SNE进行可视化分析进一步验证模型的特征提取和分类能力。最后,在青霉素发酵过程数据集上,与原始的时间卷积网络TCN和卷积神经网络CNN进行对比实验。实验结果表明,所提模型不仅提升了故障识别的准确性,还具备良好的泛化性能。


关键词: 故障诊断, 间歇过程, 时间卷积网络, 支持向量机, 蜣螂优化算法

Abstract: To improve the accuracy of batch process fault diagnosis and address the dependence of traditional classifiers on feature extraction, this paper proposes a fault diagnosis model that combines the improved temporal convolutional network (ITCN), improved dung beetle optimizer (IDBO), and support vector machine (SVM). Fault diagnosis is divided into two processes: fault feature extraction and classification diagnosis. First, ITCN is used to extract features from batch process data, and the outputs of the fully connected layers are taken as the input to the IDBO-SVM classification layers. Second, IDBO is employed to optimize the parameters of SVM to enhance the classification accuracy of the model; meanwhile, t-distributed stochastic neighbor embedding (T-SNE) is used for visual analysis to further verify the model’s feature extraction and classification capabilities. Finally, comparative experiments are conducted on the penicillin fermentation process dataset, where the proposed model is compared with the original temporal convolutional network (TCN) and convolutional neural networks (CNNs). The experimental results show that the proposed model not only improves the accuracy of fault identification but also exhibits excellent generalization performance.


Key words: fault diagnosis, batch process, temporal convolutional network (TCN), support vector machine (SVM), dung beetle optimizer (DBO)