• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2008, Vol. 30 ›› Issue (9): 82-85.

• 论文 • 上一篇    下一篇

基于网格聚类的数据流多事件检测

袁志坚 缪嘉嘉 杜凯 贾焰   

  • 出版日期:2008-09-01 发布日期:2010-05-18

  • Online:2008-09-01 Published:2010-05-18

摘要:

事件检测是事件处理系统最重要的研究问题之一。异常、变化和突发是三类最典型的数据流事件。本文关注如何在数据流中同时检测多种事件,首先研究了多种事件之间的联 系,然后给出了基于网格聚类的统一处理方法,最后为了评估事件的严重程度,给出了打分函数。实验验证了所提方法的正确性与有效性。

关键词: 数据流 数据挖掘 事件检测 网格聚类

Abstract:

Event detection is one of the most important issues in event processing systems. Outlier, change and burst are three typical types of events. We address how to detect multiple types of events simultaneously. In this paper,we first explore the relationship of these three types of events, and then present a unified method for dealing with all of them by using grid-based clustering. In order to evaluate the events, several score functions are defined for each type of events as well. Simulation results testify the efficiency of the proposed framework.

Key words: data stream, data mining;event detection, grid-based clustering