• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2008, Vol. 30 ›› Issue (12): 55-59.

• 论文 • 上一篇    下一篇

几种改进PSO算法在带时间窗车辆路径问题中的比较与分析

张兰 雷秀娟   

  • 出版日期:2008-12-01 发布日期:2010-05-19

  • Online:2008-12-01 Published:2010-05-19

摘要:

车辆路径问题属于完全NP问题,也是运筹学中的热点问题。虽然目前有很多人进行研究,但搜索效率和迭优率较低,而且计算所得平均费用偏高。鉴于此,本文分别用二阶振荡PSO、随机惯性权重PSO、带自变异算子PSO、模拟退火PSO求解带时间窗车辆路径问题。通过仿真实验给出了这四种改进PSO算法在求解该问题时的不同;同时,与文献[1]中中的遗传算法、标准PSO算法求解该问题进行了比较并得出结论:本文中用到的四种改进PSO算法都能更有效地降低成本,缩短运行时间,提高达优率,而且随机惯性权重PSO表现尤为突出。

关键词: 车辆路径问题 改进粒子群优化算法 随机惯性权重

Abstract:

The Vehicle Routing Problem is a NP complete problem and is also a hot topic in the operational research field. Many people do research on it, but sea rching effiency and the rate of success are low and the cost is high. In view of this,the paper adopts the second-order oscillating particle swarm optim  ization, particle swarm optimization-randomly varying inertia weight,particle swarm optimization mutation operator, and simulated annealing particle swa rm optimization to solve the vehicle routing problem with time window. We list the differences when solving the problem through simulation experiments a  nd compare the four algorithms with the genetic algorithm, standard particle swarm optimization used in literature[14]. We can conclude that all the fou   r algorithms used in this article can decrease the cost, shorten the running time, and improve the rate of success effectively,and particle swarm optimi zation-randomly varying inertia weight is the best.

Key words: vehicle routing problem, improved particle swarm optimization, randomly varying inertia weight