J4 ›› 2008, Vol. 30 ›› Issue (8): 49-52.
• 论文 • 上一篇 下一篇
罗一丹 蔡自兴 龚涛 江中央
出版日期:
发布日期:
Online:
Published:
摘要:
针对克隆选择算法在求解高维函数优化问题时易陷入局部最优以及收敛速度较慢的弱点,本文基于生物免疫系统内部学习优化机制以及进化算法,提出了一种新的免疫进化算法,它包括正交交叉、单形交叉、克隆、多极变异和选择。新算法将进化计算的思想融入到克隆选择中,提出了一种新的变异算子,在保证种群多样性的同时提高了算法的全全局寻优能力。理论分析证明了算法的收敛性,并将算法应用于不同的测试函数进行仿真实验。结果表明,该算法是有效的。
关键词: 免疫算法 正交交叉 单形交叉 多极变异 函数优化
Abstract:
Considering the drawbacks of easily being trapped in a local optimal solution and low convergence velocity of the clone selection algorithms in solving high dimmensional function optimization, this paper proposes a new immune evolutionary algorithm based on the interior learning mechanism of biologica l immune systems and evolutionary algorithms. The new algorithm includes orthogonal crossover, simplex crossover, clone, multipolar mutation and selecti on. The idea of evolutionary computation is integrated into clone selection, and a new mutation operator is proposed. This new algorithm can guarantee t he diversity of the population and improve the global search ability. Theoretical analyses prove that NIEA converges to the global optimum. Different fu nctions are utilized to test this method and the simulation results suggest that this algorithm has good performance.
Key words: immune algorithm, orthogonal crossover, simplex crossover, multipolar mutation, function optimization
罗一丹 蔡自兴 龚涛 江中央. 一种新的免疫进化算法在函数优化中的应用[J]. J4, 2008, 30(8): 49-52.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/
http://joces.nudt.edu.cn/CN/Y2008/V30/I8/49