J4 ›› 2008, Vol. 30 ›› Issue (8): 57-60.
• 论文 • 上一篇 下一篇
申慧[1] 刘知贵[1] 刘素萍[2]
出版日期:
发布日期:
Online:
Published:
摘要:
在核查技术中,对于以核材料为对象的探测是最基本、最受关注的技术。随着核能的利用和相关工业的发展,放射性核素的检测问题逐渐引起了国际社会的密切关注。与传统 的分析方法不同,本文采用神经网络中的BP算法,以提取出的γ能谱的相关信息作为输入,对网络进行训练,这使它能够对输入的数据信息进行分类,进而可以有效便捷地判断出,哪些是属于同一种核素的。
关键词: 神经网络 &gamma, 能谱 放射性 核素
Abstract:
Nuclear material detection is a basic technology and attracts the most attention. With the development of nuclear energy utilization and related indus tries, the problem of radionuclide examination has aroused extensive concern in the international community. Different from the traditional analytical m ethod, this paper adopts the BP algorithm in neural net- works, takes the related information of the extracted γ spectrum as the input, and trains the network. After training, the net- work can sort the input data items, and effectively and conveniently decide which belong to the same nuclear material
Key words: neural networks;&gamma, spectrum, radioactivity, nuclear material
申慧[1] 刘知贵[1] 刘素萍[2]. 基于神经网络算法的γ射线能谱分析[J]. J4, 2008, 30(8): 57-60.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/
http://joces.nudt.edu.cn/CN/Y2008/V30/I8/57