• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2006, Vol. 28 ›› Issue (7): 62-64.

• 论文 • 上一篇    下一篇

基于分类子块的图像检索

胡一君[1] 邹北骥[2]   

  • 出版日期:2006-07-01 发布日期:2010-05-20

  • Online:2006-07-01 Published:2010-05-20

摘要:

图像等分成M×N块后,将子块分成背景子块、目标子块和边缘子块三类,并从中提取颜色、空间特征和边缘特征,求图像间相似度时只在同类子块之间进行匹配.这样既减少了匹配运算量,又可避免不同类子块匹配所产生的干扰.实验结果表明,该方法不仅求图像间相似度的运算量小,而且对图像的旋转和平移变化不敏感,具有较好的检索性能.

关键词: 基于内容的图像检索 分类子块 相似度

Abstract:

After an image is evenly divided into a number of M×N non-overlapped blocks, these blocks are classified into three classes., background blocks, object blocks and edge blocks. The extraction methods for the features are given and a practical CBIR system is designed. Experimental results demonstrate t he efficiency of our techniques.

Key words: content-based image retrieval classified block similarity