J4 ›› 2006, Vol. 28 ›› Issue (2): 69-71.
• 论文 • 上一篇 下一篇
余艳芳 高大启
出版日期:
发布日期:
Online:
Published:
摘要:
为了克服传统支持向量机训练速度慢、计算资源需求大等缺点,本文应用最小二乘支持向量机算法来解决分类问题。同时,本文指出了决策导向循环图算法的缺陷,采用自适应导向循环图思想来实现多类问题的分类。为了提高样本的学习速度,本文还将序贯最小优化算法与最小二乘支持向量机相结合,最终形成了ADAGLSSVM算法。考虑到最小二 乘支持向量机算法失去了支持向量的稀疏性,本文对支持向量作了修剪。实验结果表明,修剪后,分类器的识别精度和识别速度都得到了提高。
关键词: 最小二乘支持向量机 序贯最小优化 自适应导向循环图
Abstract:
Conventional support vector machines (SVMs) have the demerits ot low training speect and htgn computauonal requirements. To overcome the shortcomings, this paper applies the least squares support vector machine (LSSVM) to the issue of pattern classification. Meanwhile, this paper briefly points ouut the limitations of the decision directed acyclic graph (DDAG) algorithm, and uses the adaptive directed acyclic graph (ADAG) algorithm for solvinng multiclass problems. In order to enhance the learning speed of samples, this paper introduces sequential minimal optimization (SMO) to LSSVM, and f finally constructs the ADAGLSSVM algorithm. Owing to the lacking sparsity in the LSSVM algorithm, support vectors are pruned in the experiment to improve the accuracy and speed of classifiers. Experimental result shows that the performance of classifiers is improved after pruning.
Key words: least squares support vector machine, sequential minimal optimization, adaptive directed aeyclic graph
余艳芳 高大启. 一种改进的最小二乘支持向量机及其应用[J]. J4, 2006, 28(2): 69-71.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/
http://joces.nudt.edu.cn/CN/Y2006/V28/I2/69