J4 ›› 2006, Vol. 28 ›› Issue (1): 59-61.
• 论文 • 上一篇 下一篇
吴晓勤 严秀坤
出版日期:
发布日期:
Online:
Published:
摘要:
本文论述了与给定切线多边形相切的有理二次Bézier曲线,构造曲线是曲率连续的,具有局部可调性,且对切线多边形是保形的;跟三次(四次)Bézier曲线或B样条曲线方法相比,具有切点的变动范围更大、曲线次数低、结构简单、计算量少、显示更快的特点。最后,通过实例加以说明。
关键词: 有理二次Bé, zier曲线 切线多边形 保形曲线
Abstract:
This paper proposes an approach of constructing rational quadratic Bézier curves with all edges tangent to a given control polygon. The curve is joined by piecewise as G^2-continuity and shape-preserving to the tangent polygon. The rational quadratic Bézier curve is less of computation than the curv ves with the cubic(quartic) B6zier and cubic(quartic) B- Spline curves. Pinally, two examples show that the method given in this paper is effective for CAGD.
Key words: rational quadratic Bézierr curve;tangent polygon;shape-preserving curve
吴晓勤 严秀坤. 带有给定切线多边形的曲率连续的有理二次样条曲线[J]. J4, 2006, 28(1): 59-61.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/
http://joces.nudt.edu.cn/CN/Y2006/V28/I1/59