• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2006, Vol. 28 ›› Issue (4): 63-65.

• 论文 • 上一篇    下一篇

基于模糊理论扩充的归纳学习方法和思想

陈建祥[1] 肖卫东[2] 宋峻峰[2]   

  • 出版日期:2006-04-01 发布日期:2010-05-20

  • Online:2006-04-01 Published:2010-05-20

摘要:

归纳学习是机器学习最重要、最核心也是最成熟的一个分支,但在应用归纳学习所获得的知识以及改进归纳学习算法等方面存在着很多传统方法难以解决的问题。本文从归纳 学习的本质——归纳依赖于数据间的相似性出发,尝试将能够较好地定量反映数据间相似性程度的模糊理论应用到归纳学习中去,为归纳学习和机器学习找出一个新的研究方法和思路。

关键词: 归纳学习 机器学习 向量空间 相似度 距离

Abstract:

Inductive learning is one of the most important, the corest and the maturest branches in machine learning, but for using the knowledge acquired by lea rning and improving inductive learning algorithms, there are a lot of problems that are hard to solve using traditional methods. In this paper, the esse nce of inductive learning, i. e. induction depending on the similarity of data, is considered as the starting point. Fuzzy theory, which can quantitativ ely reflect the similarity among data, is introduced into inductive learning. This introduction gives a new method and idea for inductive learming.

Key words: inductive learning, machine learning, vector space, similarity, distance