• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2006, Vol. 28 ›› Issue (6): 38-40.

• 论文 • 上一篇    下一篇

基于信息增益的贝叶斯入侵检测模型优化的研究

何慧[1,2] 苏一丹[2,3] 覃华[2]   

  • 出版日期:2006-06-01 发布日期:2010-05-20

  • Online:2006-06-01 Published:2010-05-20

摘要:

对于不同类型的网络入侵,其行为特征所涉及到的主要数据属性会有所不同.传统的朴素贝叶斯(NB)入侵检测模型没有考虑这个差别.本文引入信息增益改进传统的NB模型,利用它来对网络连接数据的属性进行特征选择,并删除一些冗余的属性,达到优化NB入侵检测模型的目的.实验表明,信息增益对NB模型有一定的优化作用,相对神经网络模型有更 高的检测率.

关键词: 朴素贝叶斯分类 入侵检测 信息增益

Abstract:

As for different network intrusion detections, their different actions have different data attributes. The traditional Naive Bayesian(NB) model of i ntrusion detection did not consider the difference. The paper exploits information gain in order to improve the traditional NB model,and use it to selec t features and delete unneeessary attributes in order to optimize NIK The experimental results show that information gain can optimize the traditional NB model to some extent, and have a higher detection rate for neural networks.

Key words: Naive Bayesian classifier, intrusion detectiom information gain