• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2007, Vol. 29 ›› Issue (1): 90-93.

• 论文 • 上一篇    下一篇

一种基于单纯形法的随机微粒群算法

夏桂梅 曾建潮   

  • 出版日期:2007-01-01 发布日期:2010-05-30

  • Online:2007-01-01 Published:2010-05-30

摘要:

以保证全局收敛的随机微粒群算法SPSO为基础,本文提出了一种改进的随机微粒群算法——SM-SPSO。该方法是在SPSO的进化过程中,以单纯形法所产生的最优个体来代替SPSO中停止的微粒,参与下一代的群体进化。这样既可以利用单纯形法的收敛快速性,又可以利用SPSO的全局收敛性。通过对两个多峰的测试函数进行仿真,其结果表明在搜索空间 维数相同的情况下,SM-SPSO的收敛率及收敛速度均大大优于SPSO。

关键词: 随机微粒群算法 单纯形法 全局优化

Abstract:

Based on the stochastic particle swarm optimization algorithm that guarantees global convergence, an improved stochastic particle swarm optimization a  lgorithm named SM-SPSO is proposed. During the evolution of SPSO, the best particle produced by the simplex method substitutes for the stopping particle  , and takes part in the evolution of the next generation. Thus, both the characteristics of speedy convergence of the nonlinear simplex method and the g  lobal convergence of the stochastic particle swarm optimization algorithm are used. Through the experiments of two multi-modal test functions, the resul t of simulation proves that the speed of convergence and the rate of convergence for SM-SPSO are better than SPSO on the same dimension of search space.

Key words: stochastic particle swarm optimization;simplex method;global optimization