J4 ›› 2007, Vol. 29 ›› Issue (1): 90-93.
• 论文 • 上一篇 下一篇
夏桂梅 曾建潮
出版日期:
发布日期:
Online:
Published:
摘要:
以保证全局收敛的随机微粒群算法SPSO为基础,本文提出了一种改进的随机微粒群算法——SM-SPSO。该方法是在SPSO的进化过程中,以单纯形法所产生的最优个体来代替SPSO中停止的微粒,参与下一代的群体进化。这样既可以利用单纯形法的收敛快速性,又可以利用SPSO的全局收敛性。通过对两个多峰的测试函数进行仿真,其结果表明在搜索空间 维数相同的情况下,SM-SPSO的收敛率及收敛速度均大大优于SPSO。
关键词: 随机微粒群算法 单纯形法 全局优化
Abstract:
Based on the stochastic particle swarm optimization algorithm that guarantees global convergence, an improved stochastic particle swarm optimization a lgorithm named SM-SPSO is proposed. During the evolution of SPSO, the best particle produced by the simplex method substitutes for the stopping particle , and takes part in the evolution of the next generation. Thus, both the characteristics of speedy convergence of the nonlinear simplex method and the g lobal convergence of the stochastic particle swarm optimization algorithm are used. Through the experiments of two multi-modal test functions, the resul t of simulation proves that the speed of convergence and the rate of convergence for SM-SPSO are better than SPSO on the same dimension of search space.
Key words: stochastic particle swarm optimization;simplex method;global optimization
夏桂梅 曾建潮. 一种基于单纯形法的随机微粒群算法[J]. J4, 2007, 29(1): 90-93.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/
http://joces.nudt.edu.cn/CN/Y2007/V29/I1/90