J4 ›› 2007, Vol. 29 ›› Issue (10): 112-114.
• 论文 • 上一篇 下一篇
涂松[1] 贲可荣[1] 徐荣武[2] 田立业[1]
出版日期:
发布日期:
Online:
Published:
摘要:
本文提出利用SOM优化RBF网络隐层节点的方法提高噪声源识别的速度。用SOM对已有样本进行聚类,确定出各聚类的中心和半径,将其传送到RBF的隐层节点,再利用反向传播算法调整隐层到输出层的权值。通过新的样本来检验和比较优化前后的网络识别效果,验证了该方法的可行性和有效性。
关键词: 自组织映射(SOM) 径向基函数(RBF) 隐层优化 聚类 噪声源识别
Abstract:
We present a new way which uses the Self-Organlzing Map(SOM) network to optimize the RBF hidden neurons to improve the velocity of identifying the a coustic fault sources of underwater vehicles. Firstly, the former samples are clustered by SOM in the unsupervised form, then the weight between hidden neurons and output neurons is adjusted with the BP(back-propagation) algorithm. Finally, we use new samples to test and compare the performance of the e original neural network classifier with the one after optimization. The experimental results show that it is an efficient method, and can improve the velocity and accuracy of identification.
Key words: (self-organizing mapping (SOM), radial basis function (RBF) ;optimization of hidden n eurons, clustering, a-coustic fault sources identification)
涂松[1] 贲可荣[1] 徐荣武[2] 田立业[1]. 采用SOM和RBF神经网络优化的水下航行器噪声源识别[J]. J4, 2007, 29(10): 112-114.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/
http://joces.nudt.edu.cn/CN/Y2007/V29/I10/112