J4 ›› 2007, Vol. 29 ›› Issue (10): 47-49.
• 论文 • 上一篇 下一篇
徐计 张桂芸
出版日期:
发布日期:
Online:
Published:
摘要:
决策树归纳的两个重要阶段是数据表示空间的简化和决策树的生成。在将训练集的不一致率控制在某一阈值的前提下,减少实例的属性个数和各个属性的取值个数保证了决策树方法的可行性和有效性。本文在Chi2算法的基础上运用它的一种变形进行属性取值离散化和属性筛选,然后运用算术运算符合并取值个数为2或3的相邻属性。在此基础上生 成的决策树具有良好的准确性。实验数据采用的是一个保险公司捐献的数据集。
关键词: 决策树 Chi2的变形 离散化 筛选
Abstract:
The simplification of training dataset representation and the generation of decision trees are two critical phases in decision tree induction. On the condition of bringing the inconsistency rate under a threshold, reducing the attribute number and the different value number of each attribute assures t he feasibility and effectiveness of the decision tree learning method. In this paper, a variation of the Chi2 algorithm is proposed to perform attribute discretization and selection. The decision tree generated in the further steps offers a good classification accuracy. Our experiment is based on a data set donated by an insurance company from the real world.
Key words: (decision tree, variation of Chi2, discretization, selection)
徐计 张桂芸. 运用Chi2算法的一种变形简化决策树归纳的实例表示空间[J]. J4, 2007, 29(10): 47-49.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/
http://joces.nudt.edu.cn/CN/Y2007/V29/I10/47