J4 ›› 2007, Vol. 29 ›› Issue (2): 40-43.
• 论文 • 上一篇 下一篇
杨岳湘 王海龙 卢锡城
出版日期:
发布日期:
Online:
Published:
摘要:
本文提出了基于信息熵的大规模网络流量异常分类方法。该方法综合运用子空间方法和k-means分类方法,并以校园网为实验环境实现了网络流量异常分类实验。实验结果表明,基于信息熵的大规模网络流量异常分类实现简单、计算量小,分类准确性高。
关键词: 信息熵 子空间方法 大规模网络流量 异常分类
Abstract:
This paper presents an entropy-based large-scale network traffic anomaly classification method for the integrated use of the subspace method and the k -means clustering method.And classifying network traffic anomalies is realized in the experimental environment of campus networks.The experimental resul ts show that large-scale traffic anomaly classification based on entropy not only realizes simple and has a small computation quantity,but also has a high classification precision.
Key words: (entropy,subspace method,large-scale network traffic,anomaly classification)
杨岳湘 王海龙 卢锡城. 基于信息熵的大规模网络流量异常分类[J]. J4, 2007, 29(2): 40-43.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/
http://joces.nudt.edu.cn/CN/Y2007/V29/I2/40