• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2007, Vol. 29 ›› Issue (2): 40-43.

• 论文 • 上一篇    下一篇

基于信息熵的大规模网络流量异常分类

杨岳湘 王海龙 卢锡城   

  • 出版日期:2007-02-01 发布日期:2010-06-01

  • Online:2007-02-01 Published:2010-06-01

摘要:

本文提出了基于信息熵的大规模网络流量异常分类方法。该方法综合运用子空间方法和k-means分类方法,并以校园网为实验环境实现了网络流量异常分类实验。实验结果表明,基于信息熵的大规模网络流量异常分类实现简单、计算量小,分类准确性高。

关键词: 信息熵 子空间方法 大规模网络流量 异常分类

Abstract:

This paper presents an entropy-based large-scale network traffic anomaly classification method for the integrated use of the subspace method and the k -means clustering method.And classifying network traffic anomalies is realized in the experimental environment of campus networks.The experimental resul  ts show that large-scale traffic anomaly classification based on entropy not only realizes simple and has a small computation quantity,but also has a high classification precision.

Key words: (entropy,subspace method,large-scale network traffic,anomaly classification)