J4 ›› 2007, Vol. 29 ›› Issue (4): 72-73.
• 论文 • 上一篇 下一篇
王珺 刘希玉
出版日期:
发布日期:
Online:
Published:
摘要:
本文基于人工免疫系统中经典的网络模型——aiNet模型,提出了一种数据的模糊聚类算法——aiFCM,给出了算法的流程,并通过实验证明了算法的有效性。实验表明,通过人工免疫网络与传统统计分析工具的结合,能够有效地从数据集合中提取有用的聚类。
关键词: 人工免疫系统 模糊聚类 aiNet aiFCM
Abstract:
This paper proposes a data fuzzy clustering algorithm named aiFCM, based on the aiNet which is a classical network model in the artificial immune system. It offers the flow of the algorithm and proves its validity by some experiments. The results show that we can pick out the useful clusters efficiently by combining the artificial immune network with the traditional statistics and analysis tool.
Key words: artificial immune system, fuzzy clustering, aiNet, aiFCM
王珺 刘希玉. 基于aiNet的数据模糊聚类算法[J]. J4, 2007, 29(4): 72-73.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/
http://joces.nudt.edu.cn/CN/Y2007/V29/I4/72