• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2007, Vol. 29 ›› Issue (6): 117-120.

• 论文 • 上一篇    下一篇

基于高斯-施密特粒子滤波器的多机器人协同定位

邵金鑫 王玲 魏星   

  • 出版日期:2007-06-01 发布日期:2010-06-03

  • Online:2007-06-01 Published:2010-06-03

摘要:

多机器人协同定位需对各个机器人的运动模型和观测模型精确建模,需要运用非线性、非高斯系统。已经应用于本领域的各种非线性算法主要有两种:一种是扩展卡尔曼滤波 算法(EKF),它对非线性系统进行局部线性化,从而间接利用卡尔曼算法进行滤波与估算;另一种是序列蒙特卡罗算法,即粒子滤波器(PF)。本文介绍了一种改进的粒子滤波
 器,即高斯-施密特粒子滤波器(GHPF),重点比较这三种算法在多机器人协同定位领域的应用效果。

关键词: 协同定位 扩展卡尔曼滤波器(EKF) 粒子滤波器(PF) 高斯-施密特粒子滤波器(GHPF)

Abstract:

In the field of muhi-robot cooperative localization,it is necessary to model accurate dynamic equations and observation equations, which need nonlinea   rity and non-Gauss systems. Several nonlinearity algorithms are applied in this realm. There are mainly two kinds. One is the extended Kalman filter (E EKF), which makes a local linearization to a nonlinear system, so the Kalman filter (KF) can be utilized indirectly to filter and estimate. The other r is the sequential Monte Carlo method on point mass, which is also called the particle filter(PF). In this paper, we introduce an improved particle f  filter,namely the Gauss-Hermite particle filter(GHPF). We lay our stress on comparing the effect of these three algorithms, which are applied in the r realm of multi-robot cooperative localization.

Key words: (cooperative localization, extended Kalman filter, particle filter, Gau ss-Hermite particle filter)