• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2007, Vol. 29 ›› Issue (7): 74-76.

• 论文 • 上一篇    下一篇

F2+uF2上奇偶长循环码的结构特性

盖新貌[1] 李超[1,2]   

  • 出版日期:2007-07-01 发布日期:2010-06-02

  • Online:2007-07-01 Published:2010-06-02

摘要:

码长为2n(n为奇数)的循环码被称为奇偶长的循环码。本文证明了F2+uF2上奇偶长循环码具有形如(a1(x^2)a3(x^2)a4(x^2)a5(x)a6(x),ua1(x^2)a2(x^2) a4(x)a5(x^2))的结构,其中ai(x),i=1,2,…,6,满足Пi=1^6ai(x)=x^n-1,而且a5^ ~(x)≡a5(x)(modu),并给出了奇偶长循环码之对偶码的生成元 表达。

关键词: F2+uF2 循环码 生成元 准素多项式

Abstract:

A cyclic code with length 2n(n is odd)is called a cyclic code with oddly even lengths. We prove that any cyclic code over F2 +uF2 with oddly even l engths has generators of the form (a1 (x^2 )a3 (x^2 )a4 (x^2 )a5^ ~(x)a6 (x), ua1 (x^2 )a2 (x^2)a4 (x)a5 (x^2)), whereПi=1^6ai(x)=x^n-1,a5^  ~(x)≡a5(x)(modu),and. the structure of its dual code has been given in this paper as well.

Key words: (F2 +uF2, cyclic code, generator, primary polynomial)