• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2007, Vol. 29 ›› Issue (9): 137-139.

• 论文 • 上一篇    下一篇

一种新的多层感知机隐含层神经元个数上限计算方法

张国敏 殷建平 祝恩 强永刚   

  • 出版日期:2007-09-01 发布日期:2010-06-02

  • Online:2007-09-01 Published:2010-06-02

摘要:

多层感知机在分类问题中具有广泛的应用。本文针对超平面阈值神经元构成的多层感知机用于分类的情况,求出了输入层神经元最多能把输入空间划分的区域数的解析表达 式。该指标在很大程度上说明了感知机输入层的分类能力。本文还对隐含层神经元个数和输入层神经元个数之间的约束关系进行了讨论,得到了更准确的隐含层神经元个数上
上限。当分类空间的雏数远小于输入层神经元个数时,本文得到的隐含层神经元个数上限比现有的结果更小。

关键词: 神经网络 神经元 多层感知机 超平面 分类

Abstract:

Multilayer perceptrons are widely applied in classification. This paper concentrates on the hyperplane multilayer perceptrons for classification. And the maximum number of space cells produced by input neurons is formulated. It shows the classification ability of the input neurons. Based on this, a mo re accurate upper limit of the hidden layer neuron number is achieved by discussing the restriction between the input neuron number and the hidden neuro n number. It is proved that the upper limit of the hidden layer neuron number in this paper is much smaller than the former results when the input space dimension is far smaller than the input layer neuron number.

Key words: (neural network, neurom multilayer perceptrom hyperplane, classification)