J4 ›› 2008, Vol. 30 ›› Issue (10): 103-104.
• 论文 • 上一篇 下一篇
栾峻峰 范克磊 鲍海峰
出版日期:
发布日期:
Online:
Published:
摘要:
本文提出了高维空间球体的k-中心聚类问题。该问题是指对高维空间中多个球构成的集合B,构造是个球来共同覆盖B中所有已知的球,并使k个球中的最大半径最小。本文从B中有选择地取出一部分球构成集合s,称其为B的核心集,并利用该核心集,对给定ε给出了高维空间球体k-中心聚类问题关于球数n和维数d的多项式时间1-ε近似算法。而且,S中球的个数为O(1/ε^2),与B中球的个数和空间维数无关。
关键词: 近似算法 聚类 核心集 覆盖 最小球
Abstract:
The paper proposes the k -center clustering problem of high-dimensional space balls. The problem means as for the set B built by the multiple bails ina high-dimensional space, k bails are built to cover all the known bails in B and make the biggest radius of the k balls the smallest. We selectively s elect some balls from B to build sets, which is called the core set of B , and for a given ε, we use the core set to propose the polynomial time 1 + ε approximation algorithm with ball number n and dimension d based on the k -center clustering problem of high-dimensional space balls. And the number of balls in S is 0 (1/ε^2 ), which is not related to the number of balls in B and the dimension of the space.LUAN Jun-feng, FAN Ke-lei, BAO Hai-feng
Key words: approximation algorithm, clustering, core-set, covering, smallest ball
栾峻峰 范克磊 鲍海峰. 高维空间球体的k-中心聚类问题[J]. J4, 2008, 30(10): 103-104.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/
http://joces.nudt.edu.cn/CN/Y2008/V30/I10/103