J4 ›› 2008, Vol. 30 ›› Issue (10): 37-39.
• 论文 • 上一篇 下一篇
公昱文 张桂芸 马洪芝
出版日期:
发布日期:
Online:
Published:
摘要:
独立分量分析(ICA)是信号处理领域新近发展起来的一种很有应用前景的方法,而脑功能磁共振(fMRI)信号的有效分离与识别是一个正在研究和实验之中的技术领域。近年来,ICA已被成功地应用于fMRI数据的处理,成为分析IMRI数据的一种很有效的方法。本文介绍了ICA在分析fMRI数据方面的应用,以及多种ICA算法在fMRI信号盲源分离中 的应用,分析了三种算法的问题,给出了本人对此研究的展望。
关键词: ICA fMRI 空间独立分量分析算法Orth-Infomax算法 Group ICA算法
Abstract:
ICA is the application of very promising methods in the field of signal processing. While the effective separation and identification of the fMRI sign als is a technical field which is being studied and experimented. In recent years, ICA has been successfully used in the fMRI data processing. It has become a very effective way of analyzing the fMRI data. The paper introduces the application of ICA both in the analysis of the fMRI data and a variety of algorithms in the blind source separation of the fMRI signals. It also analyzes the problems existing in three algorithms, and presents the prospect of research in this field.
Key words: ICA, fMRI, SICA, Orth-Infomax algorithm, Group ICA algorithm
公昱文 张桂芸 马洪芝. ICA算法在fMRI中的应用[J]. J4, 2008, 30(10): 37-39.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/
http://joces.nudt.edu.cn/CN/Y2008/V30/I10/37