• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2008, Vol. 30 ›› Issue (10): 48-50.

• 论文 • 上一篇    下一篇

改进的遗传算法在作业调度中的应用

李佳[1] 彭玉青[1] 胡希文[2]   

  • 出版日期:2008-10-01 发布日期:2010-05-19

  • Online:2008-10-01 Published:2010-05-19

摘要:

作业调度问题(JSP)是一类典型的NP-hard问题,遗传算法作为一种通用的优化算法在求解JSP中得到了广泛的应用。本文主要针对作业车间调度问题,基于改进的遗传算法   ,根据种群的进化状况,从而确定种群的适应度值,使之能够保持种群的多样化。

关键词: 作业车间调度 遗传算法 自适应遗传算法

Abstract:

The job-shop scheduling problem (JSSP) is one of the most difficult combinatorial optimization problems, and it is also a typical NP-hard problem. G    A(Genetie Algorithm), as a current optimized algorithm, has been used widely for JSP. In order to solve the problem of job-shop scheduling, and accordding to the condition of population evolution, this paper presents a new adaptive algorithm with a new crossover and mutation method based on the improv  ed genetic algorithm, and realizes a multi-population crossover in order to keep the population's diversification.

Key words: job-shop scheduling, genetic algorithm, adaptive genetic algorithm