J4 ›› 2008, Vol. 30 ›› Issue (10): 48-50.
• 论文 • 上一篇 下一篇
李佳[1] 彭玉青[1] 胡希文[2]
出版日期:
发布日期:
Online:
Published:
摘要:
作业调度问题(JSP)是一类典型的NP-hard问题,遗传算法作为一种通用的优化算法在求解JSP中得到了广泛的应用。本文主要针对作业车间调度问题,基于改进的遗传算法 ,根据种群的进化状况,从而确定种群的适应度值,使之能够保持种群的多样化。
关键词: 作业车间调度 遗传算法 自适应遗传算法
Abstract:
The job-shop scheduling problem (JSSP) is one of the most difficult combinatorial optimization problems, and it is also a typical NP-hard problem. G A(Genetie Algorithm), as a current optimized algorithm, has been used widely for JSP. In order to solve the problem of job-shop scheduling, and accordding to the condition of population evolution, this paper presents a new adaptive algorithm with a new crossover and mutation method based on the improv ed genetic algorithm, and realizes a multi-population crossover in order to keep the population's diversification.
Key words: job-shop scheduling, genetic algorithm, adaptive genetic algorithm
李佳[1] 彭玉青[1] 胡希文[2]. 改进的遗传算法在作业调度中的应用[J]. J4, 2008, 30(10): 48-50.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://joces.nudt.edu.cn/CN/
http://joces.nudt.edu.cn/CN/Y2008/V30/I10/48