• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2008, Vol. 30 ›› Issue (11): 21-24.

• 论文 • 上一篇    下一篇

基于PSO智能优化的SFS三维重构算法研究

班晓娟 李欣 宁淑荣 景俊杰   

  • 出版日期:2008-11-01 发布日期:2010-05-19

  • Online:2008-11-01 Published:2010-05-19

摘要:

智能优化算法在优化计算、搜索和人工智能方面有着广泛的应用潜力。为了提高三维重构模型的逼真度,本文把智能优化算法中的PSO算法应用在SFS算法改进中,并应用基准   测试函数对算法进行仿真比较,最后分析了算法的性能效率与收敛性。可以看出,优化后的SFS算法性能有了显著提高。

关键词: 智能优化算法 PSO算法 SFS算法 算法性能

Abstract:

Particle swarm optimization (PSO) is a new heuristic global optimization technique based on swarm intelligence. To improve the fidelity of 3D recons truction, this paper uses a PSO algorithm to optimize the SFS algorithm and adopts the basic test function to perform emulation and comparisons. In the  end, we analyse the performance and convergence speed of the improved SFS algorithm. Obviously, the method has been proved remarkably.

Key words: intelligent optimized algorithm, PSO, SFS, algorithm performance