• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2008, Vol. 30 ›› Issue (3): 35-39.

• 论文 • 上一篇    下一篇

基于复小波变换的遥感图像并行融合算法

王攀峰 杜云飞 周海芳 杨学军   

  • 出版日期:2008-03-01 发布日期:2010-05-19

  • Online:2008-03-01 Published:2010-05-19

摘要:

随着遥感技术的快速发展,多源遥感图像的快速融合成为很多遥感任务的关键处理步骤。为了加速遥感图像的融合处理过程,本文首先提出了一种新的基于双树复小波变换的并行融合算法(PACWT)。算法中综合运用了数据分布、并行数据处理和负载均衡技术,以克服单机处理在计算能力和存储器空间上的限制;针对基于CWT的图像融合处理的计
 计算特点,设计了一种可有效避免计算过程中数据通信的冗余划分方法。然后,从理论上分析了算法在时间和空间两方面的性能。最后,通过实验分析了算法在32-CPU的Cluster系统上的实际性能。结果表明,本文提出的算法具有良好的可扩展性,在数据量较大时可获得良好的加速比和并行效率。

关键词: 图像融合 并行算法 数据划分 负载均衡 冗余划分 遥感

Abstract:

With the rapid development of the remote sensing technology, fast fusion of digital images from disparate sources has become critical to the success o   f these endeavors. In this paper, to speedup the fusion process, a Parallel Fusion Algorithm based on Dual-Tree Complex Wavelet Transform (PACWT for shhort) of remote sensing images is presented for the first time. To overcome the limitations on the memory space as well as the computing capability of  a single processor, data distribution, data-parallel processing and load balancing techniques are integrated into PACWT. To avoid the inherent communic  ation overhead of the complex-wavelet-based fusion method, a special design called redundant partitioning is used, which is inspired by the characterist  ics of complex wavelet transform. Finally, PACWT is evaluated in theory and tested on a 32-CPU cluster of workstations. The experimental results show th at our algorithm has good parallel performance and scalability.

Key words: image fusion, parallel algorithm, data distribution, load balancing, redundant partitioning, remote sensing