• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2008, Vol. 30 ›› Issue (5): 65-67.

• 论文 • 上一篇    下一篇

连续空间多目标最优化问题的蚁群遗传算法

伍爱华 李智勇   

  • 出版日期:2008-05-01 发布日期:2010-05-19

  • Online:2008-05-01 Published:2010-05-19

摘要:

本文提出了一种基于蚁群算法和遗传算法的多目标蚁群遗传算法,用于解决连续空间中带约束条件多目标最优化问题。本算法先将解空间分解成子区域,再用信息素标定这些子 区域,信息素对遗传搜索进行指导,在搜索中更新信息素,同时采用了最优决策集的更新策略和搜索收敛退出机制,从而提高求解效率,降低算法复杂度。实验证明,与以往算法相比,此算法能更快、更精确地逼近Pareto前沿。

关键词: 连续空间 多目标问题 多目标蚁群遗传算法(MOAGA) Pareto前沿

Abstract:

A new algorithm based on ant colony algorithms and genetic algorithms called Multi-Objective Ant-Genetic Algorithm, which is used to solve the multi-o bjective optimization problem constrained by some conditions, is presented in this paper. Firstly, the solution space is divided into some subspaces, and all the subspaces are labeled by pheromone, then the pheromone guides the inheritance searching and updates itself. Meanwhile, the strategy of updatin g the Pareto optimal decisions and the scheme of converging and exiting the searching are used to promote the efficiency and reduce the complexity of the algorithm. In the end, an example is listed to prove that the algorithm can approach the Pareto front more quickly and accurately than the previous al  gorithm.

Key words: continuous space;multi-objective problem;multi-objective ant-genetic algorithms(MOAGA);Pa reto front