• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2011, Vol. 33 ›› Issue (11): 65-70.

• 论文 • 上一篇    下一篇

GRAPES模式中Helmhothz方程两种求解方法的对比研究

宋君强1,伍湘君1,2,张理论1,陈德辉2,金之雁2,胡江林2,李兴良2   

  1. (1.国防科学技术大学计算机学院,湖南 长沙 410073;
    2.中国气象局数值预报中心国家气象中心,北京 100081)
  • 收稿日期:2011-03-01 修回日期:2011-06-28 出版日期:2011-11-25 发布日期:2011-11-25
  • 基金资助:

    国家863计划资助项目(2009AA01A138);国家自然科学基金资助项目(40505023);公益性行业(气象)科研专项资助项目(GYHY201006013)

A Study of the Two Helmholtz Solvers in the GRAPES Model Using GCR and GMRES

SONG Junqiang1,WU Xiangjun1,2,ZHANG Lilun1,CHEN Dehui2,JIN Zhiyan2,HU Jianglin2,LI Xingliang2   

  1. (1.School of Computer Science,National University of Defense Technology,Changsha 410073;
    2.Center for Numerical Weather Prediction,National Meteorological Center of CMA,Beijing 100081,China)
  • Received:2011-03-01 Revised:2011-06-28 Online:2011-11-25 Published:2011-11-25

摘要:

GRAPES是中国气象局自主研发的一个全球/区域分析预报系统。其模式计算方程组经过离散化之后,积分求解过程最终归结为对一个椭圆方程或Helmholtz(赫姆霍兹)方程的求解,这个求解是整个动力框架计算的核心。在目前GRAPES全球模式的准业务计算中,对于分辨率为0.5o的系统,Helmholtz方程的求解时间占到了整个模式计算时间的三分之一强。而且随着未来高分辨率模式的进一步加细,以及模式计算精度的提高,方程求解计算总量更是呈指数式增长。为此,本文分析了GRAPES模式中求解Helmholtz方程所采用的广义共轭余差法(GCR),并对比给出了利用PETSC函数库中提供的GMRES方法求解Helmholtz方程的一些初步测试结果。结果表明,采用高精度的GMRES方法可以减少模式预报偏差,改善模式预报准确度,在大规模并行计算时具有更好的可扩展性能。

关键词: GRAPES, Helmholtz方程, 广义共轭余差法(GCR), 广义最小残差法(GMRES)

Abstract:

GRAPES(Global and Regional Assimilation and PrEdiction System)is a new generation of NWP model in CMA (China Meteorological Administration) for the operational implementation. After the discretization of computing equations for GRAPES's model, the first calculation becomes the solution of the Helmholtz equations which is the kernel computing of the dynamic framework. The running time for solving the Helmholtz equations is more than onethird of the total cost for GRAPESglobal mode at 0.5ox0.5o horizontal resolution with 38 vertical levels, and for the higher resolution model, the timecost is an exponential growth. The generalized conjugate residual method is employed to solve the 3D Helmholtz equation in the version of the GRAPES mode currently, as a contrast, another method which is based on GMRES(generalized minimal residual method)of PETSc(Portable, Extensible Toolkit for Scientific computation) is used here. The computation shows that the GMRES method with high precision can improve the forecast accuracy and has much better scalability for largescale parallel computing.

Key words: GRAPES;Helmholtz equation;GCR(Generalized Conjugate Residual method);GMRES(Generalized Minimal RESidual method)