• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2011, Vol. 33 ›› Issue (5): 102-105.

• 论文 • 上一篇    下一篇

基于蜂群遗传算法的0-1背包问题

吴迪,姜永增,宋广军   

  1. (齐齐哈尔大学计算机与控制工程学院,黑龙江 齐齐哈尔 161006)
  • 收稿日期:2010-04-19 修回日期:2010-08-03 出版日期:2011-05-25 发布日期:2011-05-25
  • 作者简介:吴迪(1980),男,山东茌平人,硕士,讲师,研究方向为人工智能。姜永增(1977),男,黑龙江齐齐哈尔人,硕士,讲师,研究方向为无线传感器网络和智能算法。
  • 基金资助:

    黑龙江省2009年研究生创新科研资金项目(YJSCX2009102HLJ);齐齐哈尔市科委项目(GYGG090072)

The 01 Knapsack Problem Based on the BeeSwarm Genetic Algorithm

WU Di,JIANG Yongzeng,SONG Guangjun   

  1. (School of Computer and Control Engineering,Qiqihaer University,Qiqihaer 161006,China)
  • Received:2010-04-19 Revised:2010-08-03 Online:2011-05-25 Published:2011-05-25

摘要:

针对0-1背包问题,本文提出了基于蜂群遗传算法的优化求解方案。该算法包括两个种群,一个主要用于全局搜索,另一个主要用于局部搜索;每个个体采用二进制编码;采用最优个体交叉策略;对当前解的处理措施是将还未装入背包且性价比最好的物品装进背包,直至不能装为止;不符合约束条件的解采用诱变因子指导变异处理;遗传算子包括单点交叉算子、简单变异算子、主动进化算子和抑制算子。本算法充分发挥了遗传算法的群体搜索和全局收敛的特性,快速地并行搜索,有效地克服了经典遗传算法容易陷入局部最优问题。数值实验表明,该算法在求解0-1背包问题中取得了较好的效果,同样可以应用于其它的组合优化问题。

关键词: 背包问题, 蜂群遗传算法, 主动进化算子, 最优交叉, 抑制算子

Abstract:

This paper presents a beeswarm genetic algorithm for the 0-1 knapsack problem. There are two populations, one for global search, and the other for local search. Each individual adopts the binary code. Only the best one can crossover. The strategy of managing the feasible solution is to enclose the goods which is out of the knapsack and costeffective, until no goods can be put into. The solution which does not accord with the constraint condition mutates under the instruction of mutagens. The genetic operators include order crossover operator, twoblockexchange mutation operator and restraint operator. The method sufficiently takes the advantage of the genetic algorithm such as group search and global convergence in order to have a quick parallel search, which efficiently overcomes the problem of local optimization. The experimental results show that the bee swarm genetic algorithm is efficient in solving the 0-1Knapsack  problem, and is also suitable for other combinatorial optimization problems.

Key words: knapsack problem;bee swarm genetic algorithm;active evolution operator;best one crossover;restraint operator