• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2011, Vol. 33 ›› Issue (9): 184-188.

• 论文 • 上一篇    下一篇

基于简化血流图小波包域DCT系数决策融合的红外人脸识别

谢志华1,孙俊杰2   

  1. (1.江西科技师范学院光电子与通信重点实验室,江西 南昌 330013;2.江西电力职业技术学院,江西 南昌 330032)
  • 收稿日期:2011-05-20 修回日期:2011-07-26 出版日期:2011-09-25 发布日期:2011-09-25
  • 作者简介:谢志华(1977),男,江西峡江人,硕士,副教授,研究方向为图像处理与模式识别。
  • 基金资助:

    江西省教育厅科技项目(GJJ11225)

Infrared Face Recognition Based on the DCT Coefficient Decision Fusion of the Modified Blood Perfusion Model Wavelet Packet Domain

XIE Zhihua1,SUN Junjie2   

  1. (1.Key Laboratory of OpticElectronics and Communications,Jiangxi Sciences and Technology Normal University,Nanchang 330013;2.Jiangxi Vocational and  Technical College of Electricity,Nanchang 330032,China)
  • Received:2011-05-20 Revised:2011-07-26 Online:2011-09-25 Published:2011-09-25

摘要:

本文提出了一种基于简化血流图小波包域DCT系数融合的红外人脸识别方法。首先,基于人体的皮肤温度分布和温度调节机理,结合红外成像原理及生物传热学知识对人脸的血流模型进行简化,把红外人脸温谱图转换成简化血流图,然后将人脸简化血流图进行三级小波包分解,得到小波包分解树,选取其中识别率最高的若干个节点分别进行DCT变换,得到每个节点的特征矩阵,再通过欧氏距离和三阶近邻分类器得到各选中节点的识别结果,最后将这些结果进行决策融合,得到最终的识别结果。实验结果表明,对血流模型的简化可以在几乎不降低识别的同时,减小时间的复杂度,而在小波包域进行DCT系数融合的方法能提取更加有效的人脸特征,从而提高了红外人脸识别的性能。

关键词: 红外人脸识别;简化血流图;小波包;离散余弦变换;决策融合

Abstract:

A novel method is proposed for infrared face recognition in this paper. Firstly, thermal images are converted into modified blood perfusion images by a modified blood perfusion model to obtain consistent facial images without the effect of the ambient variations. Secondly, the modified blood perfusion data are decomposed into a wavelet packet tree using three scales’ discrete wave packet transform. Then, proper numbers of nodes with the highest recognization score are further transformed via discrete cosine transform (DCT). The features extracted from the reserved nodes in the DCT domain are used for recognition using the 3nn classifier in the Euclidean distance to obtain the recognition results. The results are finally fused to output the final recognition results. The experiments conducted illustrate that the  proposed method has better performance. While the recognition rate does not decrease based on the modified blood model compared to the blood model obviously and have even lightly improved in some cases, and more efficient features are extracted using the coefficient of DCT in the wavelet packet domain and decision fusion, which can improve the infrared face recognition performance.

Key words: infrared face recognition;modified blood perfusion model;wavelet packet;discrete cosine transform;decision fusion