• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2012, Vol. 34 ›› Issue (1): 124-136.

• 论文 • 上一篇    下一篇

蛋白质相互作用网络分析的图聚类方法研究进展

李敏1,武学鸿1,王建新1,潘毅1,2   

  1. (1.中南大学信息科学与工程学院,湖南 长沙 410083;
    2.佐治亚州立大学计算机系,佐治亚州 亚特兰大 303023994,美国)
  • 收稿日期:2010-05-20 修回日期:2010-10-26 出版日期:2012-01-25 发布日期:2012-01-25
  • 基金资助:

    国家自然科学基金资助项目(61003124);教育部博士点专项基金资助项目(20090162120073);中南大学中央高校基本科研业务费专项资金资助项目(201012200124)

Progress on GraphBased Clustering Methods for the Analysis of ProteinProtein Interaction Networks

LI Min1,WU Xuehong1,WANG Jianxin1,PAN Yi 1,2   

  1. (1.School of Information Science and Engineering,Central South University,Changsha 410083,China;
    2.Department of Computer Science,Georgia State University,Atlanta,Georgia 303023994,USA)
  • Received:2010-05-20 Revised:2010-10-26 Online:2012-01-25 Published:2012-01-25

摘要:

随着可获得的大规模蛋白质相互作用数据的迅速增长,从系统水平上对细胞机制的基本组件和结构的理解成为了一种可能。如今所面临的最大挑战是如何通过分析此类复杂的相互作用数据来反映细胞组织、进程以及功能的规律。基于图理论的聚类方法是分析蛋白质相互作用数据的有效手段。本文将从蛋白质相互作用网络(PPI网络)的图模型、聚类算法、评估方法及应用几个方面描述PPI网络聚类分析的最新研究进展。最后,讨论该方向研究所面临的挑战及进一步的研究方向。

关键词: 系统生物学, 蛋白质相互作用网络, 图聚类方法, 蛋白质复合物, 蛋白质功能

Abstract:

With the increase of largescale proteinprotein interaction data available, it has been possible to understand the basic components and organization of the cell mechanism from the system level. The challenge is how to analyze such complex interacting data to reveal the principles of cellular organization, processes and functions. Many studies have shown that using graphbased clustering methods is an effective approach to analyzing proteinprotein interaction data. In this review, several aspects will be presented to describe the recent advances in clustering methods for protein interaction networks, such as the graph models of the PPI network, clustering methods, evaluation methods and applications. Finally, the challenges and directions for future research will be discussed.

Key words: system biology;protein interaction network;graphbased clustering algorithms;protein complex;protein function