• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2012, Vol. 34 ›› Issue (11): 114-119.

• 论文 • 上一篇    下一篇

叶类中药显微图像的阈值分割和自动分类

张翠萍1,杨善超2   

  1. (1.福建中医药大学管理学院,福建 福州 350122;2.福建师范大学数学与计算机科学学院,福建 福州 350108)
  • 收稿日期:2011-01-18 修回日期:2011-04-17 出版日期:2012-11-25 发布日期:2012-11-25

The Micro Image Threshold Segmentation and Automatic Classification of Leafy Herbal Medicine

ZHANG Cuiping1,YANG Shanchao2   

  1. (1.School of Management,Fujian University of Traditional Chinese Medicine,Fuzhou 350122;2.School of Mathematics and Computer Science,Fujian Normal University,Fuzhou 350108,China)
  • Received:2011-01-18 Revised:2011-04-17 Online:2012-11-25 Published:2012-11-25

摘要:

针对叶类中药显微图像的特征,本文提出一种基于阈值分割叶类中药显微图像的方法,并完成气孔指数的测定。采用边缘检测技术来指导阈值分割的过程,并通过形态学处理和区域描述子共同完成细胞的分割和区域计数,在此基础上,结合图像颜色空间特征,基于图像目标正态分布的假设,对去除细胞图像的其他部分进行分割,从而完成气孔的分割。实验结果表明,该方法对叶类中药显微图像能够进行有效的分割。

关键词: 叶类中药显微图像, 边缘检测, 阈值, 气孔指数, 分割

Abstract:

According to the characteristics of the micro image of leafy herbal medicine, the paper proposes a threshold based segmentation method for the micro image of leafy herbal medicine, and measures the stomata index. The edge detection methods are used to elevate the threshold segmentation, and the morphology methods and region descriptor are employed to segment cells and count regions. Suppose that the objects in the image has normally distributed,we segment the stomata in the image where the cells have been removed. In this step the characteristic of the colorspace is used. The experiments show that the proposed threshold based segmentation method is effective for the Micro Image of Leafy Herbal Medicine.

Key words: micro image of leafy herbal medicine;edge detection;threshold;stomata index;segmentation