• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2012, Vol. 34 ›› Issue (3): 152-157.

• 论文 • 上一篇    下一篇

应用带标识的模糊Petri网的模糊推理

孙晓玲,王宁,梁艳   

  1. (合肥师范学院数学系,安徽 合肥 230601)
  • 收稿日期:2011-01-22 修回日期:2011-05-21 出版日期:2012-03-26 发布日期:2012-03-25
  • 基金资助:

    安徽省高等学校省级自然科学研究项目(KJ2009B148Z,KJ2012Z322);安徽省高等学校优秀青年人才基金项目(2009SQRZ157,2009SQRZ156)

Fuzzy Reasoning by Using Marked Fuzzy Petri Nets

SUN Xiaoling,WANG Ning,LIANG Yan   

  1. (Department of Mathematics,Hefei Normal University,Hefei 230601,China)
  • Received:2011-01-22 Revised:2011-05-21 Online:2012-03-26 Published:2012-03-25

摘要:

本文针对模糊推理中常存在推理结果意义不明确的问题,提出应用带标识的模糊Petri网(MFPNs)进行模糊推理。推理的过程中考虑模糊产生式规则的权值、阈值、确定性因子等几种知识表示参数以获得更多信息。给出基于相似性测度的模糊推理算法,通过计算带标识的模糊Petri网的最终输出库所中的托肯值可以得到最终的模糊推理结果。通过实例可以验证这样得到的推理结果意义更明确,计算过程更加高效。

关键词: 模糊Petri网, 模糊推理, 标识, 相似度, 加权模糊产生式规则

Abstract:

Aiming at the problem that the use of fuzzy Petri nets to make fuzzy reasoning is usually unclear in fuzzy reasoning, a marked fuzzy Petri net(MFPN) is presented to carry out fuzzy reasoning. Several knowledge representation parameters: weight, certainty factor and threshold value, etc, are considered during fuzzy reasoning to obtain more information. A reasoning algorithm based on similarity measures is proposed. The deduced consequence can be calculated according to computing the token value in the final output place. Through the verification of production examples, the meaning of the deduced consequence is clearer and the calculation process is more efficient.

Key words: fuzzy Petri net;fuzzy reasoning;mark;similarity measure;weighted fuzzy production rules