J4 ›› 2014, Vol. 36 ›› Issue (02): 359-366.
吕品1,2,3,钟珞1,蔡敦波2,3,吴云韬2,3
LV Pin1,2,3,ZHONG Luo1,CAI Dunbo2,3,WU Yuntao2,3
摘要:
方面级意见挖掘的任务通常包括从客户评论中抽取产品的特征、与产品特征相关联的观点词识别以及观点的极性判断三个方面。围绕如何实现中文评论的方面级意见挖掘问题,提出了利用条件随机场实现中文评论的方面级意见挖掘的四个主要步骤:数据预处理、训练集准备、为条件随机场模型定义学习函数、应用模型标注新的评论数据。在此基础上,通过以五种实际产品的中文评论语料为数据集,对该方法进行了数据实验。实验结果表明,该方法针对不同类型观点元素的抽取在评估性能指标上大部分达到或超过80%。为了进一步验证所提出方法的有效性,将研究结果进行了差异显著性检验。结果显示,用CRF对中文评论进行方面级意见挖掘和对英文评论的方面意见挖掘的性能差异不大。最后,比较了三种不同方法的方面抽取精度和情感分类精度,实验结果表明,CRF方法优于词典化的隐马尔可夫模型和关联规则挖掘方法。