• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (03): 463-468.

• 论文 • 上一篇    下一篇

一种单种群混合蛙跳算法

王联国1,2,龚亚星2   

  1. (1.甘肃农业大学信息科学技术学院,甘肃 兰州 730070;2.甘肃农业大学工学院,甘肃 兰州 730070)
  • 收稿日期:2012-10-15 修回日期:2013-01-09 出版日期:2014-03-25 发布日期:2014-03-25
  • 基金资助:

    国家自然科学基金资助项目(61063028);甘肃省教育信息化发展战略研究项目(2011)

A single population shuffled frog leaping algorithm       

WANG Lianguo1,2,GONG Yaxing2   

  1. (1.College of Information Science and Technology,Gansu Agricultural University,Lanzhou 730070;
    2.College of Engineering,Gansu Agricultural University,Lanzhou 730070,China)
  • Received:2012-10-15 Revised:2013-01-09 Online:2014-03-25 Published:2014-03-25

摘要:

针对SFLA算法运行速度较慢、在优化部分函数问题时精度不高和易陷入局部最优的缺点,提出了一种单种群混合蛙跳算法SPSFLA。该算法采用单个种群,无需对整个种群进行排序,每个个体通过向群体最优个体和群体中心位置学习进行更新。如果当前个体学习没有进步,则对群体最优个体进行变异,并用变异的结果替代当前个体,加快了算法的运行速度和收敛速度,提高了优化精度。仿真实验结果表明,该算法具有更好的优化性能。

关键词: 群体智能, 混合蛙跳算法, 单种群, 加速因子, 聚群行为

Abstract:

Aiming at the shortcomings of shuffled frog leaping algorithm(SFLA) such as ease of trapping into local optimum, low optimization precision and slow speed when it is used to optimize some functions, a Single Population Shuffled Frog Leaping Algorithm (SPSFLA) is proposed. Without sorting the whole population, this new algorithm adopts single population. The individuals are updated by learning from the global best individual and the global middle position. If the current individual is not improved, the global best individual will be mutated and the current individual will be replaced by the new one. Those enhance the running speed, the convergence rate and the optimization precision of SPSFLA. The simulation results show that the improved algorithm has better optimization performance.

Key words: swarm intelligence;shuffled frog leaping algorithm;single population;acceleration factor;swarm behavior