• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (07): 1330-1335.

• 论文 • 上一篇    下一篇

支持向量机补偿的多因素灰色模型话务量预测

郭勤1,贾振红1,覃锡忠1,盛磊2,陈丽2   

  1. (1.新疆大学信息科学与工程学院,新疆 乌鲁木齐 830046;2.中国移动通信集团新疆有限公司,新疆 乌鲁木齐 830063)
  • 收稿日期:2013-03-28 修回日期:2013-05-31 出版日期:2014-07-25 发布日期:2014-07-25
  • 基金资助:

    中国移动通信集团新疆有限公司研究发展基金资助项目(XJM201201)

A multi-factor grey model based on SVM residual
error compensation for telephone traffic prediction         

GUO Qin1,JIA Zhenhong1,QIN Xizhong1,SHENG Lei2,CHEN Li2   

  1. (1.School of Information Science and Engineering,Xinjiang University,Urumqi 830046;2.Subsidiary Company of China Mobile in Xinjiang,Urumqi 830063,China)
  • Received:2013-03-28 Revised:2013-05-31 Online:2014-07-25 Published:2014-07-25

摘要:

为了提高对话务量的预测精度以及建模的速度,针对当前移动通信话务量预测受到多种因素的影响,提出了基于支持向量机残差补偿的多因素灰色话务量预测模型。该模型通过灰色关联分析法确定影响话务量的主因素变量,然后用多变量灰色模型进行预测,再用粒子群优化的最小二乘支持向量机进行残差序列预测,以实现残差补偿。实验结果表明,该预测模型具有所需样本小、预测精度高的优点,为话务量网络管理提供了一种新的预测工具。

关键词: 关联分析, 多因素灰色模型, 残差补偿, 话务量

Abstract:

In order to improve the prediction accuracy of telephone traffic and the speed of modeling, aiming at that the current mobile telephone traffic forecasting is influenced by many factors, a multifactor grey traffic prediction model based on Support Vector Machine (SVM) residual error compensation is proposed. In this model, the main factors affecting the traffic variables are determined by the grey correlation analysis method, and the multivariable grey model is used to do prediction. Then, the residual error sequence is predicted by the leastsquares SVM optimized by the particle swarm optimization so as to realize the residual error compensation. The experimental results show that the required samples of this prediction model are small, the model has the advantage of high accuracy, and the model provides a new forecasting tool for the telephone traffic network management.

Key words: correlation analysis;multifactor grey model;residual error compensation;traffic