• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (07): 1371-1376.

• 论文 • 上一篇    下一篇

一种新的基于SVM和主动学习的图像检索方法

彭晏飞1,尚永刚1,王德建2   

  1. (1.辽宁工程技术大学电子与信息工程学院,辽宁 葫芦岛 125105;2.渤海装备辽河重工有限公司,辽宁 盘锦 124010)
  • 收稿日期:2012-12-18 修回日期:2013-05-10 出版日期:2014-07-25 发布日期:2014-07-25
  • 基金资助:

    国家自然科学基金资助项目(61172144)

A novel image retrieval method
based on SVM and active learning           

PENG Yanfei1,SHANG Yonggang1,WANG Dejian2   

  1. (1.School of Electronics and Information Engineering,Liaoning Technical University,Huludao 125105;
    2.China Detroleum Liaohe Equipment Company,Panjin 124010,China)
  • Received:2012-12-18 Revised:2013-05-10 Online:2014-07-25 Published:2014-07-25

摘要:

在基于内容的图像检索中,支持向量机(SVM)能够很好地解决小样本问题,而主动学习算法则可以根据学习进程主动选择最佳的样本进行学习,大幅度缩短训练时间,提高分类算法效率。为使图像检索更加快速、高效,提出一种新的基于SVM和主动学习的图像检索方法。该方法根据SVM构造分类器,通过“V”型删除法快速缩减样本集,同时通过最优选择法从缩减样本集中选取最优的样本作为训练样本,最终构造出不仅信息度大而且冗余度低的最优训练样本集,从而训练出更好的SVM分类器,得到更高的检索效率。实验结果表明,与传统的SVM主动学习的图像检索方法相比,该方法能够较大幅度提高检索性能。

关键词: 图像检索, 支持向量机, 主动学习, &ldquo, V&rdquo, 型删除法, 最优选择法

Abstract:

In the content-based image retrieval, Support Vector Machine (SVM) can resolve the problem of small sample size, and the active learning algorithm can select the most optimal samples to learn actively according to the learning process, thus reducing the training time greatly and improving the efficiency of the classification algorithm. In order to obtain the more rapid and efficient image retrieval, a novel image retrieval method based on SVM and active learning is proposed. Firstly, the method constructs the classifier on the basis of SVM. Secondly, the “V” elimination method is used to reduce the sample sets quickly, and the optimal selection method is applied to select the optimal samples from the reduced sample sets as the training ones. Finally, the optimal training sample set with abundant information and lower redundancy is obtained, so that the better SVM based classifier is constructed and the higher retrieval efficiency is achieved. Experimental results show that, compared with the traditional image retrieval method based on SVM and active learning, the proposed method has better performance and can improve the retrieval performance greatly.

Key words: image retrieval;SVM;active learning;“V”elimination method;optimal selection method