• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (09): 1806-1811.

• 论文 • 上一篇    下一篇

基于信息熵的局部线性嵌入

梅松青,周洪建   

  1. (广州医学院信息管理与信息系统系,广东 广州 510182)
  • 收稿日期:2013-01-10 修回日期:2013-06-08 出版日期:2014-09-25 发布日期:2014-09-25
  • 基金资助:

    广州市属高校科研重点项目(10A148)

Information entropy based local linear embedding         

MEI Songqing,ZHOU Hongjian   

  1. (Department of Information Management and Information System,Guangzhou Medical University,Guangzhou 510182,China)
  • Received:2013-01-10 Revised:2013-06-08 Online:2014-09-25 Published:2014-09-25

摘要:

信息熵保证原始空间特征最大确定性的概率分布,且能够处理缺失值、噪声等问题;流形学习方法局部线性嵌入能够在降维后的子空间中较完整地表现原空间流形结构中特征间的关系。结合两者优势,提出一种新的特征选择方法,基于信息熵的局部线性嵌入,先对原始空间的特征信息熵进行估计,然后用局部线性嵌入对保有最大信息量的特征子空间降维,最后获得较低维度的特征子空间。在给定的UCI标准数据集中,实验结果表明了该方法在特征选择中的可行性及有效性。

关键词: 信息熵, 流形学习, 局部线性嵌入, 维度归约, 分类

Abstract:

Information entropy guarantees the most determinative probabilistic distribution of features in the original space, and it is able to deal with the problems such as value missing and noise; Manifold learning, i.e., Locally Linear Embedding in the dimensionalityreduced subspace, can completely present the relationship among features in the original manifoldstructured space. Combining both advantages, a new feature selection approach, named, Information Entropy based Locally Linear Embedding is proposed. Firstly, the feature information entropy is evaluated in the original space. Secondly, locally linear embedding is used to reduce the dimensionality in the feature subspace that keeps the most information. Finally, the feature subspace with lower dimensionality is obtained. In the given standard UCI dataset, the experimental results show the feasibility and validity of this method in feature selection.

Key words: information entropy;manifold learning;local linear embedding;dimensional reduction;classification