• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (10): 2019-2027.

• 论文 • 上一篇    下一篇

基于互信息和众数的类间关系研究

陈峰,张伟娟,靳小波   

  1. (河南工业大学信息科学与工程学院,河南 郑州 450001)
  • 收稿日期:2013-03-11 修回日期:2013-06-20 出版日期:2014-10-25 发布日期:2014-10-25
  • 基金资助:

    国家自然科学基金资助项目(61203265,61103138);河南省重点项目(122102110106);河南工业大学博士基金资助项目(150121)

Mining inter-class relationship based on
mutual information and mode pattern           

CHEN Feng,ZHANG Weijuan,JIN Xiaobo   

  1. (College of Information Science and Engineering,Henan University of Technology,Zhengzhou 450001,China)
  • Received:2013-03-11 Revised:2013-06-20 Online:2014-10-25 Published:2014-10-25

摘要:

簇间关系的评估对于确定许多现实中的关键未知信息具有重要作用,可被广泛应用在犯罪侦查、进化树、冶金工业和生物嫁接等领域。提出了一种称为“众数模式+互信息”的方法对簇间关系进行排序。该方法使用众数模式从每个簇中寻找具有代表性的对象,使用互信息衡量簇间的关联程度。由于该方法利用簇间关系判断簇与簇的联系程度,所以它不同于传统的分类和聚类。在图形和癌症诊断数据上的实验表明了该算法的有效性。

关键词: 关系树, 概念簇, 众数模式, 互信息

Abstract:

The evaluation of the relationships between conceptual clusters is important to identify vital unknown information in many reallife applications, such as crime detection, evolution trees, metallurgical industry, biology engraftment and so forth. A method called "mode pattern plus mutual information" is proposed to rank the interrelationship between clusters. Mode pattern is used to find the outstanding objects from each cluster, while mutual information criterion measures the close proximity of cluster pairs. The proposed method is different from conventional algorithms of classifying and clustering due to focusing on ranking the interrelationship between clusters.Experiments are carried out on a wide range of reallife datasets, including image data and cancer diagnosis data.The experimental results demonstrate the effectiveness of the  proposed algorithm.

Key words: relationship tree;conceptual clusters;mode pattern;mutual information