J4 ›› 2015, Vol. 37 ›› Issue (05): 847-856.
• 论文 • 下一篇
张帅,李涛,王艺峰,焦晓帆,杨愚鲁
ZHANG Shuai,LI Tao,WANG Yifeng,JIAO Xiaofan,YANG Yulu
摘要:
稠密线性代数运算对模式识别和生物信息等许多实际应用至关重要,而通用矩阵乘(GEMM)处于稠密线性代数运算的基础地位。在cuBLAS与MAGMA中,GEMM被实现为若干kernel函数,对大型GEMM计算能够达到很高的性能。然而,现有实现对批量的小型GEMM计算性能发挥则较为有限。而且,现有实现也不能在多个具有不同性能的GPU之间自动扩展并达到负载均衡。提出任务并行式GEMM(TPGEMM),用细粒度任务并行的方式实现批量矩阵乘和多GPU矩阵乘。一个或多个GEMM的计算能够被拆分为多个任务,动态地调度到一个或多个GPU上。TPGEMM避免了为批量矩阵乘启动多个kernel函数的开销,对批量矩阵乘能够取得显著高于cuBLAS与MAGMA的性能。在低开销细粒度任务调度的基础上,TPGEMM支持单个GEMM计算在多个GPU间的自动并行,在一台具有四个不同性能GPU的工作站上取得了接近100%的扩展效率。